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ABSTRACT

This report presents the results of fundamental investigations on a
variety of topics related to the optimization of analog and digital data communi-
cation systems. The maximum likelihood estimation of FM modulated signals
is investigated. A study is made of the threshold phenomenon in FM reception
with an ideal discriminator and a postdetection Wiener filter for the case of a
random modulation function. Information theory is applied to establish bounds
on the performance of analog communications systems. The performance of'
PCM systems for transmitting analog information is investigated and compared
with theoretical bounds for systems of prescribed complexity. Previous work
on the partial ordering of digital channels by the criterion of inclusion had
been extended. The analysis of the optimization of N-ary digital systems
operating over a dispersive channel, which was begun during a previous phase
of the contract, is further advanced.
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SUMMARY

This report presents the results obtained during the third phase
of fundamental investigations in several areas related to the transmission
of analog and digital data. While the previous two phases were devoted
solely to digital techniques, the present phase is concerned primarily
with the optimization of analog demodulation techniques.

The various investigations are reported in six chapters in accordance
with the division of the technical effort as follows.

Chapter II reports the results of an investigation of the maximum
likelihood estimation of FM modulated signals. The integral equations
which describe the maximum likelihood estimation proceaw are developed.
The mean square error between the maximum likelihood estimate and the
original modulating signal, valid above threshold, are obtained and compared
with the mean square error obtained when using a receiver consisting of
an ideal descriminator followed by a Wiener postdetection filter.

Chapter III is devoted to an investigation of the threshold -L "nenon
in the reception of FM signals by a receiver consisting of an idea.
criminator and a postdetection Wiener filter for the case when th.. -T.idulating
function is arandom variable.

In Chapter IV the applic:'!ivn of information theory to establish
bounds on the performance of anaiog communication systems is discussed.

The performance of PCM systems for transmitting analog informa-
tion over a digital channel is investigated in Chapter V and compared against
bounds on the performance attainable with systems of a prescribed complexity.

Chapter VI extends the work developed in the Phase, Z repo't oa the
partial ordering of channels by the criterion of inclusion. This criterion
is applied to resolve a paradox observed in the comparisbn of certain...Ig-ary
symmetric channels.

Chapter VII extends the analysis of the optimization of N-ary digital
systems operating over a dispersive channel which was begun in the
Phase 2 report. Relationships between the transmitted waveforms, the
channel transferfunction, the spectrum of the noise, and the receiver
response function are developed.

Based on the results of this research effort, a number of recommenda-
tions for further investigations in areas related to this work are presented.
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I

INTRODUCTION

The present report covers the third phase of irivestigation, of
digital and analog communication systems which have been performed by
Cornell Aeronautical Laboratory during the period January 196Z through
February 1963, under Contract No. AF 30(602)-2210. The objective of
this.program is to conduct a variety of fundamental investigations for
the purpose of assisting the U. S. Air Force in the development of advanced
communication systems. The investigations are not aimed at the synthesis
or analysis of any particular communication system but, rather, at uncover-
ing the characteristics which govern the behavior of various methods of
communication. The entire effort covered by this report was analytic in
nature. While the first and second phases of this contract were solely
concerned with digital communication systems, the third phase was pri-
marily concerned withl analog systems; however, some of our previous
work on digital systems has been extended.

This report is organized into seven chapters, each of which treats
a particular topic in sufficient completeness so that it may be read inde-
pendently. Chapters II and III are concerned with reception of randomly
modulated FM signals. Chapter II is devoted to maximum likelihood
estimation of FM-modulated signals. The maximum likelihood estimate
is the a posteriori (i. e. , after observation of the received waveform)
most likely estimate of the modulating signal. The integral equations
which the maximum likelihood estimate must obey are developed. Expres-
sions for the mean square error between the maximum likelihood estimate
and the original modulating signal valid above threshold are developed
and compared with the mean square error obtained by means of a receiver
consisting of an ideal discriminator followed by an optimum (Wiener)
linear post-discriminator filter. Chapter III is devoted to an investigation
of the threshold phenomenon in the reception of randomly FM-modulated
signals by means of the ideal discriminator-Wiener filter receiver.

Chapter IV is devoted to a discussion of the application of informa-
tion theory to bound the performance of analog communications systems.
It is shown that it is not generally possible to specify a maximum attain-
able output signal-to-noise ratio in terms of the available channel capacity;
however, it is possible to bound the maximum attainable ratio of signal-
entropy power to mean square error between the input and output signals.

In Chapter V the performance of PCM systems for transmitting
analog data over a digital channel is investigated. Two forms of binary
PCM systems are. evaluated in terms of analog signal-to-noise ratios
which are obtained as a function of the digital error probabilities. Then
the performance of these systems is compared against theoretical bounds
on the error rate performance obtainable with digital systems of a speci-
fied complexity.

1 RADC-TDR-63-147



Chapter VI extends the results on the partial ordering of channels
by the criterion of inclusion which was developed in the Phase 2 report.
This criterion is then applied to resolve a paradox observed in the compari-
son of certain N-ary symmetric channels.

Chapter VII continues the analysis of optimization of N-ary digital
systems operating over a dispersive channel which was originated in the
Phase 2 report. While optimization directly in the time domain was
attempted in the Phase 2 report, the corresponding conditions which must
hold in the frequency domain are developed here. Relationships among
the transmitted waveforms, the channel transfer function, the spectrum
of the noise, and the receiver response function, which must hold in an
optimum system are developed.

2 RADC-TDR-63-147



S~II

MAXIMUM LIKELIHOOD RECEPTION OF FM SIGNALS

SUMMARY

In thit chapter the application of the method of maximum likelihood to

the estimation of intelligence transmitted via frequency modulation is examined.

Use of this method for purposes of demodulation was first described by Youli"l

but in the past has been applied only to modulating systems "without memory",

that is, to systems such as AM or PM where the present value of the trans-

mitted signal is a function of the present value but not the past of the

modulating signal. It is shown that this method can also be applied to

modulating systems "with memory" such as FM to yield a pair of nonlinear

integral equations, the solution of which specifies the a posteriori most

likely estimate a.*(Z) of the modulating signal a(r) .

If one assumes that the noise is additive whitr, and gaussian , the

solution of one of the integral equations becomes obvious. The other equa-

tion is then simplified by assuming that the carrier frequency is large

compared to the bandwidth of the intelligence. It is then further assumed

that for sufficiently large signal-to-noise ratios the error, i.e., the

difference between the actual intelligence a(fr) and the maximum likelihood

estimate Z*(r) goes to zero in a manner which permits linearization of the

remaining integral equation.

The linearized integral equation may be solved by the use of a Green's

function. The function obtained as the solution of the maximum likelihood

problem differs from the modulating signal for two distinct reasons, First,

because the "design" is based on the assumption that a certain noise level

will be encountered) the output is distorted, even in the absence of any

noise. (We are in the position of having taken statistically optimau measures

to combat noise and then by chance having received no noise.) Secondly, the

output contains a random component due to the random noise actually encountered.

The mean square difference between the modulating signal and the demodulated

output consists of two statistically indepbndent terms corresponding to these

*The assumption of white gaussian noise is largely motivated by reasons of
mathematical expediency.
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effects. The mean square error is a function of time r in the observation

interval e- 74 r"4 t " as one would expect. Expressions for the mean

square error are derived for the zero delay case ( T--, T - e ) and the

infinite delay case( r- e * r) -- c. ee, ( t - -). oo and compared with

similar expressions derived for more.conventional FM receivers.

In deriving the integral equations which determine the maximum likeli-
hood estimate, one must, of course, use all available statistical data. It
was assumed that these data consist of the autocorrelation functions of the

modulating signal and the additive noise and that all other parameters are
known. However, it may happen that certain parameters differ from the assumed

known values. In order to investigate the effect of such unsuspected param-

eter variations, the dependence of the mean square error on variation of

received signal and noise strength and signal phase has been computed. It
is particularly noted that the effects of an initial carrier phase error are

attenuated exponentially. For purposes of comparison the mean square error

obtained by means of a simplified analytical model, valid at high signal-
to-noise ratios, of a conventional FM discriminator followed by an optimum

(Viener) filter are computed. When operating under design conditions the

expressions obtained for this case are identical to those obtained for the

Maximum likelihood reception; however, the sensitivity to deviation from
design conditions differ.

4 RADC-TDR-63-147



INTRODUCTION

The basic reception problem of communication is to obtain at the receiver
the "best* estimate of the transmitted intelligence. In order to keep the

discussion within the area of communications engineering, we identify intelli-

gence with the modulating waveform produced at the transmitter by the source

of intelligence. The data on which this estimate is to be based consists of

a finite length record of the received waveform and knowledge of the type of

modulation used at the transmitter, the statistics of the intelligence source,

and the characteristics of the communications channel. In the simplest case

of practical interest the channel is assumed to merely add independent noise

to the transmitted waveform.

It is to be noted that the problem as stated above seeks the best estimate

of the modulating intelligence directly from the received modulated waveform.

Various definitions of best can be employed and will, in general, lead to

different estimates. The maximum likelihood solution provides the a posteriori
(after utilization of all available data) most likely estimate of the modulating

signal. The theory of maximum likelihood reception was first presented by
You*Il. In that paper it is indicated that the theory can be applied to ampli-

tude and phase modulated systems, and the case of amplitude modulation is

treated in some detail. In this paper the application of this theory to fre-
quency modulated systems will be developed. As far as application of Youla's
theory is concerned, the most important difference between frequency modula-
tion and amplitude or phase modulation is that with FM the present value of

the transmitted waveform depends on the past history as well as upon the present
value oif the modulating intelligence.

5 RADC-TDR-63-147



MAXIMUM LIKELIHOM FM MODULATION

1) Derivation of Governing Integral Equations

The system under consideration is shown in Figure 1.

MODULATODEMODUATO

t7 (Z-)

FIGURE 1

Our aim is to develop a demodulator which produces as its output a function

which is the most probable estimate of a (r) , evaluated at time t, given

the information from the preceding r seconds where t - r £ Z£ t • We

define the function a.*(rzt) as the most probable a.() ,'!gftnrtAe

input e,(r) during the interval t -T4 '< -t . For FM we have

e ra (r)] 0 4s n~o*4ja((u)oi..*o] t- -- t ()
•"t -T

where • represents the jnknown carrier phase at '- t - r-, the start of the

observation period.

We will assume that both the intelligence a (r) and the noise n (r)

are gaussian processes with zero mean and continuous covariance functions

ARz(s,T-) and 9,, (s,)

Then a(r) and n(r) may be expanded in a Karhunen-Loeve expansion,

as follm,'o3

*The notation d&r,t) is used to emphasize the dependence of a*( ) on both T, t.

In particular, we shall later compete some properties of a (t, t)

6 RADC-TDR-63-147



-. A: H;)
a(-) = -T<~ Y2 (2)

n () 1A1 12r4r~ (3)

where the Ai , N; are independent gaussianly-distributed variables with

zero mean and unity variance, and

A;./---) V d , (4)

Vt-r

The •j'(r) and the •.(f) form two complete orthonormal sets in the interval

t - T 4 r 4 t . Upon the receipt of the waveform el (r) , the ideal receiver

can do no more than to compute the a posterio1 probability density of all
possible intelligence signals p [a (r) I ej(r)] .• This is, however, not the

output one desires from a receiver; what is desired is a single function a.(r t)

which is, in some sense, the best estimate of a (r) # given the values of

el(r) over the interval t - Tr Tr t , The method of maximum likelihood

chooses ao(rt,) such that p,[a(rt)Ie,(r)] is maxzidsed. This is certainly
a reasonable criterion, but one should bear in mind that it is not the only

reasonable criterion of optimality. Using Bayes' rule, we have

p(ate,) =) 
(6)

where p (a) - probability density of a(r)

p(ale,) - conditional density of a(r) given e,(r)

p(eja) - conditional density of e,(*') given a (T)

p(e,) "probability density of 1;(r')

7 RADC-TDR-63-147



The integral of a probability density over the entire sample space (eag.,

over all possible realizations of the waveform) mast be unity. For a particular

received waveform e,(r) , p(e 1 ) is a constant, such that p(ale,) as given

by Equation (6) satisfies this normalization.

We now seek to express Equation (6) in ten 3 of the coordinates{Aij

and JNA; . The a posteriori most probable signal a(•r, t) is then determ~ied

by specification of the a posteriori most probable set [A;*] .

The a priori probability densities of the first K coordinates of

(4] and {N;J are

PK (A1,...,AK) =( 2 ")K/2 7- 71 A7)

1(2 iy) K2 N 2  (8)

The conditional probability density p(el a) is the probability density of

the noise evaluated at n(r) = e, (r)- e2 [, acr)] • Using Equation (3), the
coordinates are

N;)1 (9)N; = ,e,.r ('tr-,"I b,

Substituting Equations (7), (8) and (9) into Equation (6) yields

K(aIef) = C K•P T (A; -,a; b) (10)

where C¢ is a normalizing constant.

The set A K) which maximizes PK(alet) may be found by differentiat-

ing Equation (10) with respect to each A,, and requiring that all the deriva-

tives vanish. We shall assume that

t A -r er4 (11)
8 /R - 6 1

8 R.ADC-TDR-63-147



converges in the mean to the true Iaxiuu-l±kelihood estimate a (,rt). We

find then

d (al e,) - / ;b£-I p - (AI t (12)
#

for A,.. A()r

0 -A 4 44; b; (13)

Substituting Equation (1) into Equation (9) and using a.(rzt) yields

= r le' (-Z) -451,si (WO z#/3t1 eza *(t)ds O #l IL] 0 z
Using Equation (11) this becomes

b;= [ Wtz Eosln(wOX#Aý 21i A(K)rn11 Xm ,1(U) dU*O& otfxzd (114)

t

-/a -r 00.o< t44, dt(z)dz (1i)

E O 1-31 t -r CO 5( O * r./ t r a ,, "t-r

Substituting Equation (15) into (13)

K t , , 00o +Z ' (16)
.. r 3 x Cos .(0

Multiplying both sides of Equation (16) by A,, ft) and summing with respect

to P yields

_Z . 011'.r,;b o6;ze(~,~~# 3f~.(~d azd (17)

Interchanging both summations vith the Z integration and the ow saumtion

with the z integration yields

9 RADC-TDR-63-147



4a 0/ cos`oz a,4(duI)dts*&(fw ( I)~.?X a: bjO () (18)
"t-T-r

We must now consider what happens as -- . If t4(ut) converges
in the mean to some function a*i(e,t) , then it is easy to see that

X ax(&,t) da converges uniformly in % to a*(CL,t) 0114 for

S-r T 4 z ~t . Therefore# the first expression in the integrand con-

verges uniformly. The second expression converges uniformly to 60. (z, Z) dz

by Mercer's theorem. For the third expression, define
K

9K-(X) =• ,, b; 7p (•k ) (19)

Then, it is clear fron Equations (5) and (9) that

t ~ 1* K ) d (20)
fpk Cs, x Z) 9K C) d• J f (Z) - e2 [I-, a 5. 7 (Z) w (S) £X

Now it follows from the fact that f •pj is an orthonormal complete sequence

that the right-hand side of Equation (20) converges in the mean to e,(s)-e 2 [s,,a]

but this does not prove that { g4 converges in the mean. However, it can be

showzjthat, as the eigenvalues A; become large, the eigenfunctions ?Pi

contain terms of higher and higher frequency. Thus, assuming a bandwidth

limited channel, it is reasonable to assume that the higher-order b; are

*o small that Equation (19) converges in the mean to a function y(z). We
are now justified in letting K go to co in Equations (18) and (20) to

get the following integral equations:

e,() -4 is,(w o ,/z a*(u,,) d• ) #( ) dz) 9,r (Gz) o)z (22)

"t

The pair of integral equations (21), (22) specify the operation of a maxi-

mum likelihood FM receiver. Note that the maximum likelihood estimate

az*(? ,t) is determined by all the available data el (s), t - r S .4 t

10 RADC-TDR-63-147



2) Solution of the Integral Equations for the High Signal-to-Noise Ratio Case

If the noise is white Pn(S,Z)-e en(SO-X), Equation (22) has the

solution
e1 (s) - e2 [5, a] ~=, 2 (S)

where e2 = ½ noise power density in watts/cps of one-sided spectrum,so that

Equation (21) becomes

a'()COs(W , a*,t)du (dz -E, (23)

t- r t-r T-r

Equation (23) may be rewritten as

S - -sin(WZ,/a d" + n (z)

/t/ .t-t-r ~~-Eosin(wo%#/3O)YUtdL*

where h (z,r) TJ P 4 (zr) dz

a *r, t) to zr [O i 2wx~yE~~)ac) a#~

I-fZ-tTxt-r zt'
--EOsin(2uwox t-219 a*u, f),,24) 4-sinI [.(Ui)-a4t)]d64

r-

J2 n (z) cos (W0 z 1-1f a* (as,e) da clx(1.
"t-T

The contribution of the term in f 3 may be neglected for cwo sufficiently

large. Writing n(x) as n(z) = nc;()cos wozxn 5 (z)sin X, where n( (z) and ns(O)

are independent white gaussian processes each of intensity 2 [6nwe get

tz
[ (F -( , "n.(z)co5 ./ r"/, O d.

"T"ýt-T - x (25)
-+, s(%Jsn(21) o o:/IA (L) -,a(a)Jos(2cv s(A/a(*(at) 0da

"r-r

Again the terms in { . may be neglected for sufficiently large Wo so that

1 1 RADC-TDR-63-147



t 

t .... 

. .. 
. ..

260n f -C- Aft -

n a( 9) o o W et , oa ..,," 0 -n 3 (x ) sin df e( u, t)d + O d ~x

"( 113f -r - l-'r -

For sufficiently large signal-to-noise ratios we assume that a.*(u, )- )

in such a manner that ./ Ca(u) -oe(4 , 0j] du I << I . This permits Equation

(26) to be written in the linearized form:e A
a0k e) = h(x,r) [aEu)-a(c.,*)jdu +nc cos+(z) - n sin( dx (27)

n J%-f o" f -10A .

4#-T
where a7x):df CL(s. 0)di + 0

Now let us examine the term

q(z) -, nc co- f() - nj sin f(X)

Since n d nd are independent gaussian processes, #I(X) is also a gaussian

process. A gaussian process is completely determined by specification of its

autocorrelati on function

<iv(z),, (x * ?> -Kfn,(x) co5-f(x) - n (z) sinP(x)J (n,(z+-r) cos;#(X# r) - n,(Zt' T) sin f'x, r~)I>

= <fln. nn,(k 4.r)0 cos.pc W cos.F('z+ r)
#ýt7,(x)nj(x~r)~> .sitnf(z) sin ,(x*r)

-n wn,(xP7 5(- ')> cw sf(x) sinf)(zx-t)
-n ~n(Z) ne (Z +r).> 'en ; (Z.) cod C(Zx*r)

2 e, 2dYO~) [COS fo(x) co-s ic(%~ +) rb sin ;z Wsin f(x + r)]

so that ?('x) is just white gaussian noise of intensity 2e, .
The integral equation to be solved can now be written

v zL r a( (28)
12r JT-r RA.C --r4-
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Let

~'( ', ) f-o Ra d P ,T -) 17 (Z) (29)

(u, ý (u,(30)

vtT•t-T •t-r

bO (,•) :

wi crsn to the a t) r (a, t)

then 
f22 4

In order to obtain an explicit solution we assume that

19a(2 N 2 6.2 (32)

which corresponds to the power spectrum 5a" - 2 4

Note that the m ean square value Pa (power) of the intelligence a(r) is given

by P = Rz (0,0) - k , we shall eventually normalize both the distortion

and the noise in the output to this factor. (The reader who is not particularly

interested in the details of the analysis may at this point prefer to go

directly to Equation (45).

Substituting Equation (32) and interchanging the order of integration

we get r

e[b (V, t) - b*r, o)tn•-r , tr

[•• J•. d .Z i 4,e r [b 6O-',,t)-e, t)]
4'2  

/1 d
Jr a. t-r

Differentiate twice with respect to C,
2 2 22 2 r -t' X r) 2 t X

er•' . ./ ./ " " s n. (34i)
"2 r 2AL ' t-

$2Et I .rr-U) rr
A E 4 • Idu..IxIdv e w' V [ o-,t)- b,,o]- 6 I2 dX dv• ,-dE,*)'

13 JG t .r t r.J,.
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t n

2 22 a -~2 2 /t /, )
"- " cfs x dv4- e<, ./ .i vbvt-'(,

t-T £" -T

and we see thatY

"" /
";"e b b d d [ d[(v,-b()] (36)'T 2' (v'

2' 2brt 222

we get from &iuations (33) and (3Lb)

"" r t(v, •t)-£"6,' )l6)

Or 2f e- [b (V, t) - bi(iv, t)](o•)

t••,'d- a-' < dx dv< , , e [b(v,,,t)- b"(,*l,,)] (h',)
= 4Q" J fr .
•2 2 2 2 n# ' 2 2

~ ~--tTt) -2 6"tr,)o G ~ (e A ab(~t= (_a•~~2 "<* J-rt) .-

Also,t from Equations (36) and (37),

2•* *
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The system of Equations (38), (43) and (44) can be solved by means of a

Green's function G(Ir, e, t) , that is, we can set

b,*(r, 0) G(r b ýt)d(4 5)

Let us introduce the notation:
•2 2 2 V#141 ( C~a) [dimensionless parmeterj (146)

Lr- = eq --2 ' (47)

A,f(z-) = (1 (e-T) - -t-rT (48)

A2 r()) = a (tr-T) (149)
BT ( r- r (50 9)

B ir)= -• (t)+ # ,( (5O)

B2• ,e(r)-• (. 2/) (51)

where f(r) is an arbitrary, continous function of ' . Then G must satisfy

the following:

L= r GZ' d(r-, ) (52)

A,, G(r ; t) = O 5mG(T,•t) (53)

Equation (52) means that LrG-O where r#* , and at 'r-a , o, /r-

has an upward jump of 1,Ai

To solve Equations (52) and (53) we shall use matrix notation. First,

define C to be the complex number such that

C 1, t"± "i / Tt-z-1/(514)

so that C - '42C2 . A4. 0 o The elementary isolutions of the equation

15 RADC-TDR-63-147



L? G o Qamvrarranged in a row matrix:

Or t0 c*r-t) -C~r -C'(r- t)1IA(-; ) l e . e I e (55)

and we express G(r, P; t) by means of two colium matrices 4(p; t) 0ad

0~ 1
4ý (r, t) t -r-

Now we define the square matrix

a! (57)t"" (E (t) (5J

where primes denote derivatives with respect to V ; this is the Wronskdan

matrix and, hence, is nonsingular. Similarly, define

F00
( o (58)

Now Equation (52) is solved for r by virtue of Equation (56); for r-b,
the continuity conditions can be expressed as

0)] (59)

The boundary conditions can be expressed as

A f(e',t) -- o, a te , ) 0 (60)

With a little manipulation we find the solution

16 RADC-TDR-63-!47



(61)

Now - ('-t) - N- -t)

Cec(t-t) C'eC"(e') -c e-c(' -C' 'c*(ý"t)

(e " 2 Ce t C, c e - t) -C(4 0) , (-c2-))

Cj•¢-t (C.3ecr(-t -(4c 7 -c' -(c'# e~ '7¢t

r'(c•i)e2)cr ('c"-Ac)- r0 -(Ci-'AC)eCr-7  '•)cro O (63)

o 0 O 0 0 e
0 O o O

oc oC_4 -c] (64))c e~

= ,) c -(c-3A) -(ce-4)

Now if the real. part of Cr , that is, ITr /•tI ¼ , is sufficiently large,

the entries in the first two columns of A approach zero. Thus, using

A 2) , B( ) , and 8(2) to denote appropriate submatrices,

O'~ o o Ao ) (6.•)
---- --- , Q . ..... , a + - l--- 1--

S 0 0 [01~() [01182

(A *-8)-'= f"-~~' I o•.Jj, j (A , 8) 'A [0(A•~ (66)

0 0
0• 0 0 .0

A more detailed analysis shows that Equation (66) is correct to weithin

an error of order l• er oC1  In effect, then, we have let 7' tend to. 00 .

We now find
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cc * le-t jc~-"t +c- c e-t t

i'C *C-C*.) * Ce4- rCe "(t C( (67)
-CC e + "3 C e't - -CC(

+CC

9____f)__ [C'*o~.c) (68)

i w)(C- C) (C4- O~C *4 ) 1-2C'(C +)(C-jt) (69)~(#A(~~

* -C(4r-e) 1

"A "W "W c CC -C. -cm(-e) I(70)

LCe CM(Jf e)j

0 0 -(C+C*)(C*4-#-)(C-t) ~C(*VC~t

- 1 0 0CC ~ ( - )(~ C )C~ ( * A (71)

_(CC,,(C (A)CC*)(C+A)(*

(A+) (c -c)(C+A)(c 14 0 0 0 0 (72)

Solving for G(r, f; ) one obtains
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C-ccc)(c÷,.)(c*.•) -c"6e,- -r) -tC cc*C .)(Cz-L)e'(cwC")t÷C*&C r

- ZCC (C,,)(C-.)e -

+ C (C - C*)(C*A)(C "*A)e" r- Ig

To recapitulate,,
b'(r•)=/ e(',- i ) b (•; i) dt (45)

or t2o
-00

with ( given by Equation (29) and G- by (73).

Now i - - may be considered as the "delay time" of the demodulator
which these equations describe. In particular, we shall consider the cases

of zero delay and infinite delay:

Zero delay-. -C': G(V, V?') - G(T'')

C2C• - -÷ c*-~ €i7 (75)

Infinite delay. -- t o:Gr )=G(' '

CCO C (76)2(CA._ C".) [- CC.el"

It will prove useful to note from Equation (54) that

C = C (77a)
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Alternatively,

(C~4cC") 2-: (77b)

-• -(77c)

also ,(77d)

so that

(78)(C-CTM) Li

20, RADGe-,R-*6 AZ) -Z C .7 (79)
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3) Derivation of the Mean Square Error and Its Sensitivity to Off-Design
Conditions

It is of interest to evaluate the mean square difference between the

function akz.) obtained as the solution of Equation (23) by the methods

discussed above, and the modulating function a(r) . We note that Equation

(23) was derived on the assumption that the difference between the received

and transmitted signal consists only of additive noise of known intensity.

It seems unrealistic to assume that the strength and the phase of the

received carrier or the intensity of the additive noise are known precisely.

We shall, therefore, determine the dependence of the mean square error on

variations of these parameters. Two observations can be made at this

point: (1) the function am(ri) was obtained as the maximum likelihood solu-

tion on the assumption that these parameters are known exactly, (2) the

maximum likelihood solution is not, in generalý the least mean square
[6J

solution

We will now investigate the mean square error of a detection system

which operates in accordance with Equation (23) derived on the assumptionA A

that ES, and rn are known exactly but instead receives Fo, • *
A

and 6,° The determination of the sensitivity to deviations from design

parameters is particularly important in cases such as this where the system

has been optimized in a fairly abstract manner, for example, variations of

the phase can be disastrous to a coherent PSK system.

Let

A r A
e,) .5 in (woA,, r o(u)d.- ,A4t)+ A n(r) (80)

ae-T
A

where /'4. strength of received carrier

S n r )............... .... receiver noise of intensity 6n "/Cfl

The three parameters, au. , , are introduced here to account for.

"ttoff-design?' operation.
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Substituting Equation (80) into (23)

C(81

4/ ,.( 0  faWe +da# #4)+,anf(k) -Eo, sin (•o•, ,x a.(v..)d.+ dx,

We will first assume that A 0 - 0 and later consider the case A#O

separately. By repeating the arguments which led from Equation (23) to

Equation (28) one obtains

26hz TCa id fd i -R (82)

+ - f u ,eL(, n) i (x)
Zn Jr-

where te(x) has the same statistics as before: white gaussian noise with

autocorrelation function 2En2(?) . The solution of Equation (82) is

given by Equations (74) and (73), with these changes: A is redefined aa

r = Z z 1 -J (83)

and

= '"'" tcx/ d,- Ra/ z, r) qC)(814)
'n Je-r J, -r

From Equation (74) we see that the solution of Equation (82) can be symbolized:

The difference a -a can then be written as

-D=(-) --- )-"(85)

ZZ ~RADC -TDR -63-147



While both terms are stochastic, they are independent since the first, or

distortion term, is a function of the signal o,(4) only while the second,

or noise term, is a function of the noise n(,r) only. The mean square error

is, therefore, given by the sums of the mean squares of the separate parts

which we will now compute for the case of zero and infinite delay.

a) Zero DelaZ

(1) Distortion term, D.-

t jtG(i ý, i') a(4) d,,
(86)

.(r) may be obtained by passing white gaussian noise a(e) having intensity

e through a filter with transfer function (F(w)Il='t" so that

a ) fe i r d (87)

0 0 

'1 
0ý

9a(, 0 - aYi) = ~ 1d ridz ro(e)e a (j-r ) re ai
0 0

ffdr,~ ~ ~ a0 V'o•:egrf)'e• N). (88)

ir dv~ec-c(t t)J

-C-el f(C•!)eir(C-i.)e-CT+(C-A)e "tr-(C-)e-C~r]

Ai' i(•-) crt,(-cr - A,*

=e +r -t 4 C1-1 r-ACA O (89)
(C- C a) (C-C*)

9a(",6) (fdfA(C -A) eF A(C-A) e CZ ('t-r) (90)

0  LD -F TC-6
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The mean square of the distortion term#

e * -A 2 (C-A(C-A) -c (C -A9),- ..c e]

Do_ <* (go N.0- ~) E)2J r[j

0C- 0) 12 A -C r IC O
_ _ A_ _ _ _ _ 

A)]* 
- C, ) -;a 10 d 12 (Ct-C,) (Ct- d (CA)2 (c -c)C'(#Ck-

=(C-C 1) [(C -0) 2(C~~* (-A)(C4 (C( ~ -JA
(C£)[2 *" C 2 2*iC ZNA#c

(CC(CO Ct ) 2CYCj "

*.e (c* A)(2C-tCT*k ZCC-) * ______________-~kC-

(c-C*)' 2(C # C~cc) ZC*(C#4C*)

OOAeO/ [ -2 ( t #C -cT M L * +(C*v)C*) 2 (+AC) C #C Cx)- (cc*V-c*z )
7c-- F) [ 2C(C* C) 2 C *(C"C ,*)

~C~*) C c~+AC) (-)C~ 2C*(CC)

T= --ZCC*2(C+ C*) + Z*CC*(CC

(C-~C* C s 2 ?zc~,c, C ý-C*~ 2Aic-f;,

soc that--C f*'t

A,&,3A2  2-2,'2A2#/) ze

3,A 2 2 A fPa,. ,for large A. (91)
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The mean square distortion, Do • is determined by the product of the

intelligence power J
0& X/f e and the function .3 )" -o-÷2- .2 •

It will be noted that f(A) decreases monotonically to sero with increasing
1 .

The value of the dimensionless parameter -

provides a quantitative measure of the channel quality. It seems worthwhile

to explore the relationship of A to the more conventional FM parameters

of carrier-to-noise power ratio and modulation Index. In the usual FM analysis

sinusoidal modulation at frequency 0 is assumed. The discriminator out-

put is passed through an ideal, rectangular, low-pass filter and the noise

power is computed in that bandwidth. The modulation index, a , is defined

as the ratio of carrier frequency deviation, A ; , to modulating frequency

-x . In order to apply these concepts to the situation at hand, we

define a noise equivalent bandwidth Bv and the modulation index M as foll ows:

Let 8,y be the bandwidth of an ideal, rectangular low-pass filter, having

the same area as the intelligence power spectrum *.

8 2,/r • Z • - cps (double-sided spectrum)

The noise power A/ in the bandwidth 86/ is then

IV = IM•• !, 'A R,,..........HF noise in intelligence bandwidth B
2

The modulation index M is defined by

- Mean Square frequency deviation due to modulation -____)__

Square of noise equivalent bandwidth -

.,___ . - " "_

(2fze

*The intelligence signal a.(z?) can be obtained by passing white gaussian noise,
of intensity eA , through a filter with transfer function IF(w) J'A el(w/ ÷ P),
the intelligence power is then Ps,' e•) o An ideal filter of bandwidth
8,V will also have output power P. ; hence, BM is called the noise
equivalent bandwidth.
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Then A"•E - (7rM) PC (92)

where PC = eo .... Design Carrier Power

(2) Noise term, N0.

In order to obtain the steady-state noise term of the zero delay

estimate we let T7.- in Equation (84).

T- /dx fi e.

00

- ~ ~ 0 ''4j fc xfz ()eIi/(X) (93&)

ex 'd xl' e -Ala- #/ i ii

Note 14XG:*
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Since q7"t) is stationary, it is clear that the statistics of the noise team
are independent of t ,and we will therefore let f-0

00 -1

(C'- X C

(C- A)(-C*Afýr[(
+ C-C* yd~ - e,0 4

+(C- A)VA

-e+ if---

c-C c# ) C-*fjfC*4jec

2A(C'-A) eCe ZA (C-A) eC*.

_______ 2*C- c*,1
fZV( [c ,- e0  (C-C*)(C **A) e (98)

= C(C4- A)C C.) Cjc ACL

Substituting Equation (98) into (95) and recalling < (z(ziz )> -2e,7()
one obtains

yoM < (We(, ) -re0>

=U zea 2 */A~ dl o 2 A(C*.-A-)c eZA(C-A)eC~x 1(
jdx/c, ;C CI - Cl*(C*+*L)(C- 0 (99
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N - 0 4e4F" W-A) eZ2C 81 41 cOVI ~

o -~ LC (C*A)L(C-C*)7' CCI(C*V)C*+VC4E)(cvz 02(Co1*) (C-C)

.e C~*" *(*V

-? ru (/C'-) 16 aftC-A)"(Cf-A) ZA"C eA)C z(C*ý-A.)a

2, 1

,44n' fa, (2 C-1)c*..) [C(c~~C,')-4c¼c(Cc
2/4.5Fý(c C%-7 iC* (C# '/Cc Cc*c,,

1 eE4 ct7('-A - Un ea~ A )CC*A(C#CO) + 2Z
2,eS CZC* 2 (C*C"C) ga's C OC #2 (c C, c

Z* " 2, co~c sl* C*fC) IC'-c ~2A*CC'(C-C')# 4-Z*#!C'2C*+, c')o ZACe+ #

Z 1 2w, A 0 44AZ/_2  - (2A#)JA'-(1)

As 14A 4JA

For large A ,this is approximately

No = 1nP f (101)

The mean square noise term, No~ is 2obtained as the product of the intelligence

power PA weE,*/2 and the term q()where

again decreases monotonically to zero with increasing
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The total mean square error /.o is obtained by addition of the distortion

term Equation (91) and the noise term Equation (100).
I ?T ,

"&VIA VA A 2 A Y*71I-

b) Infinite Dela

(1) Distortion term, Doc.
00

9,z( / G..(V a 0 -,r) d (103)
#0

a/) d/ re-A r a (e-) dr

00 00

C; 0jd (1014)

Let

then e runs from -0 •o o 0 ; e runs from - to •o X.

9 a , 0)/~) dx-A'd x 'G..(.r)e 0(looS

(106)

Now for x , we find from Equations (76) and (77)

=2(C2 c5L 1 c t)

2 9c •D- )C6C (107)
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For X > 0,

e ý0.f ( e 4 'Ag

~Z(C-c* 2 )

(108)
£[C+CtAJ -A, i (eA -Ax eCO)-c ( *,t'*e- c I

f%(C*C~t) e Ec ,ec-c" c AC- ACJ eiAx- hC(c#4d)e "' AC*(CS.A)e&C~

-L 725:C+CEJ J + Z(c' -cI*S)ZC~M) 2(Ca-COR)

-Ax £ec(C~'d) - c*(c;9 i.A) C

From Equations (87),. (106)., (107) and (108)

D.,s((9a.6e. 0) -aX*))) > dx ofG.. (e)e

+= e df Igd)fC.(4k),eccA~e~

+~~~~~~ C)Cd ,c [x2C/C#(C,*#k) e (x 4 c(C* +YY d

~~AC*J)Z fZCX £(C-tcl* *)( A~~c~zC*~ e- X#C~/x
Z(C-L A) - 2CC*(2C*42k)(t) + * A

+C(aJ' -'(C-C' A Cc- i) C*+Ic,

9L '4-2T IC (c t+ 1c4)c- C.~ 't t

/((c -C~*Z)& c~c*CO.C*
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'- e6. -, c + C c* C ,*) +CO' - -L(C." , #C w2 CC J

or

3, 2•z 2 -2

1 . J

D=2 a A:zzz T ) -v, 2 (2( -A •z ( 1)V-
"" A& 3 v- for large A

By comparison with Equation (91) We note that for large A ,

(2) Noise term., No .

In order to compute the infinite delay noise term A1•,v we replace the
upper limit in Equation (93) by t, where t. will tend to o

~~~~ (C(C 1 )

SIII

(2 )ie Noi-e terN,

6n ore 8ocm1t4seifn~edlynis emN, w elc h
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66 ~±44,/ f ~id G()eAILdalIk( (113)

Let For O'C2

JrtG. (49)e /d~ t d Cre.~ #~ d4 W d41*G r)e c")

t{~zc' C0)[C(C ()e(CA) f o c'*-e (1110*,dAp

Jd2 (C£. Z I

- (c-c2 )C(-~)C-C(CEA)eA9 CA(C*_t)(.~ e-h"") tf(14

2 - C P(C etA - I~ cc*

- "( I,-e C*Al-(" _

C -f A)(e"L G.(C-)e*X - FC(-')e

Io that0 CA

2(CZC 1) ~z,ý 2 *11 eZCaC 4zO8 e~
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Therefore, X A'-e'e4x -A z-i1

L _. rq,, ' .. •,,/_•,•

e =fI (116)

For Z"<0 tlis is
ice ,+-A ce' Ce c'•f -ge c'ex CC~x"

J CZ -COZ (117)

The integrand in Equation (116) is an even function of Z' ; and the

integral is zero for X'= 0 ; therefore, the integral is an odd function of

Y-a

C-Clx'I _eC"2• (118)

=sgn•') CZ_C*2

Therefore, letting to - e ef,

,~/'\ __9n_________Ixj__ -014 (119)
CZ- C, X

and hence,

'± 2 -(e e• ,• (12 0o j

Letting -1.,-o , we obtain
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A 4 4 00' ,,I J• ICT'~ -C 0l;l• X
N. = 6 , ' -e-,.

,2.0. CA 2C*

Z#f/," (C C(k. ••.(÷.

(C, C +tSE(C-C[ * c " (121)

• • e, A* A PA

, "45)( 2 , z(zX,)/" = 2P A S(,+I)•'"

- for large N.

M AS. 4'2 A

By comparison with Equation (101) we note that for large A, Al. = 1 VO
410The results are summarized below.

By defining the dimensionless parameter our results can
be put into a somewhat simpler form for tabulation and comparison. Our results

are suanarized as follows:

Zero Delay

3A 2+ 2 - 2 23• Y I .1

Aý12A ,' 1) 7+ );A'~ 2Af r ~(123)

Q 12 71-6w
,0 *-No~ 2-/~- r' (124)

"/7'

For # /1=
34 A R

34 RADC-TDR-63-147



Infinite Delay
L 3A -23 R f

. (2. A2 +, ) 0, p (126)

For /(128)

A

It should be born in mind that 2 is dependent upon -L*- and that

the above results are optimum only if 1A =
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4) The Effect of an Initial Phase Error

In an FM system with a stochastic modulation input one intuitively expects

that the effects of an initial phase error will not be propagated indefinitely.

In fact, for infinite signal-to-noise ratio where the "instantaneous" plase

variations can be observed exactly, the initial phase specifies the constant

of integration which is equivalent to the occurence of a delta function at

the origi ( r a e - r ) of the modulating signal. For finite signal-to-noise

ratios one then expects the effects of the initial phase to decay at a rate

which is determined by the autocorrelation function Vr(t,e) = 6-"•z'r
2

and the channel quality factor A .

If in Equation (81) do #O then Equation (82) takes the form

7 LA-7, t-r

A( )~ ()i (129)

'I -ri.r

In Equation (129) let e*(r, ) - as*(% t) + e(,r ) where a:('z*) is the
coherent solution of Equation (129), i.e., for .i 0=0, and e0;¢) is

the variation of "(rd) due to 6 i# . So that

+ J.4 d&x (130)

e i ±4ZfR(Ers*j6 <Y.,,>~ Aj
4 AJ h(z, e (ut)d.d.,x+ h (131)

where - a A I

2 6n
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264.
h(2sZ~rnf'~L~. )df'

Z J, r•,e~ r -A-iz-,_e )df +f. eTP" x~z
""tzr f .AL--

(132)

/2

From the sketch bf h(f, ') f or T-¢ t -

ASKyMPrOr/C VA4La6*\

S(-•r)

0 D -
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we note that except in a region of width proportional to i/L centered on

h Yr (133)

where the unit step function r( = t f i

We shall here approximate h(9. r) by ,,(Y. •) ; this saves a considerable

amount of computational work. An exact analysis leading to similar results

is presented in Appendix I.

Substituting Equation (133) into Equation (131) yields

65(r, = Af f 6A,(~-9 6 ) tf -r xZd

xAf f f e, r) e(u,4) cz * B, ir

.Ae C.ff .r) (134)

Equation (134) has solution

C-(,0- 98( - t r) (135)

where d( ) is the unit delta function. The occurence of a delta function

is due to the approximation of h (9,) by Gro (X- ') 0 The actual

solution would also approach a delta function as -A-- . With * finite

one will encounter a transient of duration proportional to f/A . In this

case 1 as> > and the mean square error is

unchanged for such T'
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5) Relationship Between Maximum Likelihood and Conventional FM Reception

Above the Threshold

A complete analysis of the behavior of an ideal discriminator (a device

the output of which is proportional to the rate of change of phase at its

input) has not yet been performed. However, very recently, S. 0. Rice has

reported the results of his detailed investigation of *Noise in FM Receivers" !77

The analysis presented here was completed before the results of Rice' s work

became available and does not attempt to treat the behavior of FM receivers

near threshold. The present interest is to obtain the limiting performance

obtainable with a conventional FM recei.ver for comparison with the results

obtained from the maximum likelihood analysis. Since, in that analysis, it

was assumed that the operating conditions are sufficiently good to permit

linearization of the governing integral equation, the above threshold behavior

of an ideal discriminator is of primary concern. A simplified analysis similar

to that reported by W. R. Bennett will be used. C8 The noise spectrum of the

discriminator output obtained by our analysis is the first term in an asymptotic

expansion of that spectrum, which is valid as the carrier-to-noise ratio becomes

very large. The noise output from a discriminator can be obtained by considera-

tion of the statistics of the rate of change of phase of the vector resultant

of signal plus noise. The output noise consists essentially of a small

gaussian noise current and a succession of impulses or clicks which occur at

random whenever the resultant encircles the origin. In the simplified analysis

presented below, the possibility of the occurrence of clicks has been eliminated

by neglecting the in-phase component of noise. Actually, the rate of occurrence

of clicks decreases exponentially with increasing carrier-to-noise ratio.C72

The rapid onset of clicks with decreasing carrier-to-noise ratio reduces

the output signal-to-noise ratio, and this is the primary cause of the FM

threshold.

In order to obtain results for the FM receiver comparable with those

obtained for the case of maximum likelihood estimation, we will assume that

the channel conditions are so good that operation is above the threshold.

39 RADC-TDR-63-147



The use of zero delay and infinite delay least mean square error (Wiener)

filters connected to the discriminator output will yield results for compari-

son with zero and infinite delay maximum likelihood estimation.

The design of the Wiener filter requires specification of the power

spectra (or equivalent) of the signal and noise components at the input to

the filter*. An approximation, valid for high carrzey to-noise ratios, of

the discriminator output noise spectrum due to white gaussian RF noise may

be obtained as follows.0J Setting a(r) =0 in Equation (1), the received

signal is

(z) = E. sin w, # n(r) (136)

which may be written as

et()- O s ýn w.r *n,,(r~) 5 n a) 7 r c43 a).r~

( 5 i17 r + n, () co W. (137)

where A[ 2 Z-). M] Z ()+ n ,,( 6

(138)

The discriminator output is proportional to

[E,+ ,,/))00 ,hj) - , (r) ', (r) h, ,_) (139)
t4 n, (r)j+ n0

2fr~z) E

*The results of the analysis are summarized on page 50

40 RADC-TDR-63-147



for large carrier-to-noise ratios.

The spectral density of b (r) due to noise is then obtained as

CA) 
n

W. W"/U-))- '&(140)

The discriminator gain is determined as I/A by the requirement that

the output in the absence of noise be 0(r) .

Combining these results we find that the signal spectrum 4 (/w) and

noise spectrum NO(W) at the discriminator output above threshold are given by

30fw) = A , watts/cps (double-sided spectrum) (141)

N Z 6U watts/cps (double-sided spectrum) (142)

The .total signal power is

The least man square (Wiener) filter can now be designed on the basis

of Equation (144) for the infinite delay or Equation (151) for the zero

delay case. An excellent exposition of the theory of least mean square

filtering is presented by Bode and Shannon in Reference *I. The pertinent

results of that paper are abstracted below.

Assuming stationary statistics for both signal and additive noise, the

transfer function of the least mean square infinite delay filter is given by

y(()+O (144)
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where S(w) is the spectral density of the signal and N('W) is the spectral

density of the noise. The total mean square error resulting from use of

this filter is*

H (WIYW (1145)
t r f s(W) N(,•)

The least mean square zero delay filter Yy (4o) is obtained as follows.

Let

I

y~(w) ~( S S(W) * N (0) (I6

where Y,(w) is a realizable frequency response with all of its singularities

in the upper half of the co plane.

<W) Y 1(w)Y(() Y-() (147)Y=(•) Y"(.Y(• =S(W) + N•

, tooiw " impulse response corresponding
( to 't (W) (148)

S) 4 ,N 0 , realizable part of As(e) (149)

0 k<

-ica , frequency response corres-
Sponding to (150)

Then

'(W)- 3(W) Y1 (), -l

and the total mean square error H. resulting from use of this filter is

given by

h~,- j j /3f)I1 -Y.;,cW)j 2+ N(w)IY.(W)I'jiu) (152)

*The factor . does not appear in Reference [9]because the spectral density
used there Fs on a per radian basis, whereas a per cps basis has been used
in this paper.
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We shall again be interested in the performance of this system under

off-design conditions. As before, we will evaluate the deterioration when

the system is designed on the assumption of RF noise power density 6 Z

and carrier amplitude , and actually encounters 6 = A, en and
A
, . The actual noise spectrum of the discriminator output

AAis then N.(w) - I No (w)

AAAThe performance of this system with actual discrizinator noise output

A(w) can then be obtained by first assuming / /4 - / , computing

NA , D., N, , D. and then setting
£

A A

A -0.. , D. , D,

where the circumflexes denote actual rather than design conditions, and

No* , D. , N0 , D. are the contributions to the mean square error

of the infinite and zero delay filters due to noise and distortion respectively.

The channel quality factor A was previously. (Equation (83)) defined

as

X (154)

Let

AmEOA610oLF 2i e.A JA (155)

i.e., Ao is the value \ assumes when / F- = / . The nominal

discriminator output noise spectrum, Equation (142), is then given by

ND4 ) cu (156)
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a) Infinite Delay Case

Substituting Equations (141) and (156) into Equation (144), the frequency

response of the filter is

5'(W)-s +NCo(W) 011 + =_CU (157)

With this filter the mean square difference between the filter output and the

signal component of the input is given by*

#0 i•J_= , (--- ))T- 2r A, , Z)
,4. -' W _ _ _ 6 ~

27r 0 S(2~r~.w##Awl~.)wd
(158)

where

2 A J-2- 1JA for X. >>1 (159)

so that

/Hoo•" -•- •for Ao >> .

The mean square error consists of two independent components, H. -N 0 +D 0 .

Where •,, denotes the mean square output due to noise and DL. the mean

square distortion of the signal as has already been mentioned.

*The integral - W ,,,(, c).•w and the integrals Z

Z.- , 4 , and .l- which will be encountered later are evaluated in

Appendix, II.
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/V NO (wS-r .W• Id W-

= 7,. Z *- = (16o.

Iv'r ,-- • f7•,>> (16o.

D= P4, for A8 >> (161:

b )00 Oer o Iea a s e I

0 +-(162,

0

D.0  7 Pa. for A,>.(163)

b) Zero Delay Case

The transfer function Y, (W) of the zero delay Wiener filter will now
be computed, in accordance with the procedure previously outlined.

Y,(cs) '<YIw() M~w ADw A # 62 (164i)

Lpt (165)

hA 0 - (166)

Thn 7~'b~ A)~ and .2 (,b,±.4 -A) -So that
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-d {w A j')- (bZ+~ 62 2)] 2 b,, AI).Zb

- fwbe) b.s I 1i(W 4- Z)Z+btz

"(�('-b -jb )-A )( iibl)

Hence, we write

{4A. z

- iW4 (168)

and

3swY-N(w) Yu
5"(-14 =(-4(W) + NP (W) Y/ (W)

A Az A3  (169)

where

Ax At 7o / ibf fiA
A* •(b. - , _- 71k) - ý yA7. f .2b.
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I

The impulse response corresponding to zj (w) is

A_,A A,2  As iat (170)

Since )e d-'-' and i )e d

for a~bz-ib, or a--b -ib,,

the impulse response -i_(-6) ist

For e >- 0,

-ze (171)

For e < 0,

=, (If 16, 4 0 [A/,-iei 44~ -:4 )) +As ii-j

60A' 2 z b 1+ih -4C

+ (bs -ibt -U)c'b (172)

Actually, we do not need -4 (0) for e > 0 , because the realizable fre-

quency response 7,(&) is obtained from the impulse response

0 for t<0

q (W) (173-
e,; - -A for -4A
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So-- ----e--

÷ e• • (174)

Finally, the frequency response of the required filter is

(W)w -r-W

-A.~

- 2.-___ A • (175)

The mean square error resulting from use of this filter can now be determined.

The mean square error due to the noise

/~= Lf77"1-oo j O. (
t 00lo1\p '•€,

f. .- ) '-f• (____- _____1

"2•o & or' >

A0.

2 7r

The mean square error due to distortion of the signal

u.3

= 41 1.-A __ f , wp (176)
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iiZ

Since [v- -

-7 . z (. w f4-osA ,w A.A

A,,

,- -06 (1,4.3) -- "

. 77r
and /0 p da ;

7rz~ lt(7 1

,o ;.X'. (f79)

The total mean square error 
(1)

4. 
(-8

for ~»1*(1781)

We note taat 
(180)No +••• Do, +. A,

4 for(1 )

RADC-TDR-
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for A~).(183)

0. ~ ~ fr A~)1.(18 4)

c) Off-Design Performance

Assuming that deviations of the carrier and noise levels are such

that the assumption of a large carrier-to-noise power ratio remains valid,

the effects of such deviations are easily taken into account. At the out-

put of the discriminator the noise power spectrum is now NV() (--'vD(0)

while the signal spectrum S(w) remains unchanged. Therefore, at the out-
put of the filter we have^z

AA

• = # (.) 2  ]AJ

where the circumflex denotes off-design conditions.

The results obtained for the discriminator Wiener-filter receiver are

sumnarized below.

Zero Delay:

DA (7S÷)7o (186)

RD- (187)
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I.

^, . -" (' -b (188)

(Fo. - , , .- H (189W

Infinite Delay..

to"7 COp O (19o0

MO (191;A S g

. , p4  (192:

(For "A = I j R. )13

We note that when /4'. 1 we have - X , and these expressions

are identical with those obtained for the case of maximum likelihood estima-

tion, Equations (122) to (128).
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DISCUSSION OF RESULTS

The most striking result obtained is the complete agreement of the six

expressions describing the mean square error M and its decomposition into

distortion, D , and noise, N , terms obtained by the two different analyses

(maximum likelihood estimation and demodulation by means of an ideal discriminator
followed by a Wiener filter) for the case when operation is under the assumed

design conditions. Since all the results were obtained by the use of approxi-

mations valid only when operating with a high carrier-to-noise ratio it is

desirable to obtain an estimate of the range of reasonable validity of these

results. Such an estimate can be easily obtained for the discriminator-

Wiener filter case by examining the approximation made in the derivation of

the results.

This approximation is contained in Equation (139) where we set*

+= ns ,cr)] hc (r) - n.(~ h(r ) (194~)
[F0 " 001+ P%'(V)EO

This requires that E£ < c(r)> and, therefore, it is essential

that the bandwidth of the input white noise be limited. Ip practice, the

noise power is limited by the receiver i.f. bandwidth. The required i.f. band-

width is given approximately by

where

A maximum signal amplitude

... noise equivalent signal bandwidth2 (two-sided spectrum)

*This approximation is good only "most of the time" since it obviously does

not hold when -,r 0 . Reference 7 considers this problem in detail.
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I.

Since a(r) is gaussianly distributed, a maxlmum signal amplitude A cannot

be rigorously specified. However, the probability Ia(r) > A is given
by

P{Io,(iI'>A} - f-er,, .(9'.

where Pa, the modulation power, is also the expected value of atrh P4L-<a&z>
If we choose A/il = the probatility that I/a(r)>A -*
is less than lo-7. The required i~f. bandwidth 8;.f. is then

__._____ + I cps (one-sided spectrum) (197;7r

Since <n,, Z> Noise Power in i.f, bandwidth., and

Lio2 - Carrier Power, the r.f. carrier-to-noise power ratio

ff.24 =60 (198;Zd/ B£

Assuming that the approximation in Equation (194) becomes valid for -

the required r.f. signal-to-noise power ratio .4 ý, 1Odb. The above rela-

tions can now be used to determinel the approximate minimum value of the

channel quality factor %o required for our results to be valid.

Using Equations (198) and (197) we have

/0 6M ,(J2i0a, f 0 (199'.

The design chanmel quality factor ?o may be expressed in various
foris. Thus, starting with Equation (155)

,by substituting the expressions for P. ,lo and 5;.,F one obtains
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4-4

- (200)

Note that each of the terms in Equation (200) is a dimensionless parameter.

By substituting pO Woin Equation (200) the minimum required A for

applicability of our results is determined as

N T1/ (201)

It is especially to be noted that the minimum value of ?, required for

above threshold operation cannot be specified without considering the numerical

values of the parameters appearing in Equation (200).

Similarly, the range of applicability of the results of the analysis

of maximum likelihood estimation is restricted by the linearizing assumption

thatLn .,( )_( can be replaced by"K

It has not yet been determined what combination of parameters are required

to justify making this assumption.

Figure 1 illustrates the performance of both the maximum likelihood and

the Discriminator-Wiener filter receivers operating under design conditions.

Plots of A& , _pl AA L- and A- are presented
HO N. /V0 H6 0. N.in accordance with Equations (124), (122), (123), (127), (125) and (126).

The scale of ordinates expresses the above ratios in decibels, and the scale

of abscissas expresses A! , the fourth power of the channel quality
factor, also in decibels. It is important to bear in mind that these demodula-

tion systems were designed so as to minimize / H , H, and, hence, maximize
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Pa/H and that no attempt has been made to control the division of H into

its component terms, D and N a From this figure it is seen that for large

A6 all curves approach a slope of 1, this reflects the fact that H ,

D , NV all are of order 1/A, . It will also be noted that distortion

accounts for thb major portion of the mean square error. For large values of

A,, 75% of H is due to distortion and this percentage increases as A.

is decreased. Figures 2, 3, 4 and 5 describe in various ways the effects of

operating conditions differing from the design conditions. From Equations

(122) - (128) and (186) - (193) it is seen that the variation of the mean

square error and its components, due to deviations from design conditions,

is not the same for maximum likelihood estimation and demodulation by a dis-

criminator followed by a Wiener filter. Off-design operation can be due to

encountering noise and/or carrier strength other than anticipated, ',u, $ I

and/or /6. # I . Slince the mean square error H is a function of three

variables, A0  s /4s , a complete graphical presentation is not

practical. In Figure 2 a design value of A. - 10 is assumed, and the

effect of varying the received carrier strength E. -A r is displayed.

It will be noted that while an increase in carrier strength above the design

value does improve the performance, the improvement is not as great as if

the receiver had been designed fo,: this value of carrier strength. For example,

for A 40db we find from Figure 1 or Figure 2 that P Ho 6.1db.
If the carrier strength is now increased by 10db and the receiver design not

adjusted, then Figure 2 shows P/H, = 7.0db for the Discriminator-Wiener

filter and PI/H , 7,9db for maximum likelihood estimation. From Figure 1

we find that if the receivers had been designed for this condition, =

50db, 0. 6 - 8.3db, with either system of demodulation.

In Figure 3 the change in mean square error due to noise and distortion

expressed in db is plotted for the Discriminator-Wiener filter receivers.

From Equations (186), (187), (190) and (191) it is seen that this is a function

of 114., only. These equations state that for a fixed Wiener filter design

the mean square distortion, D , due to the use of this filter is independent

of variations of p4 • ' , but that the stochastic portion of the mean
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square error, N , is directly proportional to the carrier-to-noise power

ratio. From Equations (122), (123), (125) and (126) it will be noted that when

o*sa 1 these plots also describe the performance of maximum likelihood estima-

tion with variation of /s4,

The effects of variation of received carrier strength on the maximum

likelihood estimate are a function of the design point N, . The variation
of the total mean square error has already been illustrated for the case

A. 10 in Figure 2. In Figures 4 and 5 the variation of the components
A A A A

R, D1, M,, .. with variation in carrier strength is illustrated.

From these curves it is seen that for the range of interest the dependence

on A, is not very pronounced. The fact that the plots for A. -: are
A A

straight lines reflects the asymptotic dependence of N , 0 where
A -. #4 A ,Of

N aC, and D cc•0

The major significance of our results are: It has been shown, at least

for above threshold operation, that the statistically optimum demodulation

technique of maximum likelihood estimation yields tho same results as obtained

by an optimized *inverse* receiver* and that lack of knowledge of the initial

carrier phase resulte in an increased mean square error of the maximum likeli-

hood estimate only during an initial transitory period.

The fact that the assumption of an ideal (Wiener) filter following the

ideal discriminator leads to precisely the same results as the maximum likeli-

hood estimation is gratifying and serves as a *check* on a considerable amount

of mathematical manipulation. One would, however, not expect groat sensitivity

to deviations of the filter characteristics from the ideal.

*B

By an 'inverse" receiver is meant a receiver which performs an operation
*inverse" to the modulator, e.g., in PH4 the modulator produces a rate of
change of carrier phase proportional to the modulating signal and the *inverse*
receiver produces an output proportional to the rate of change of the receiver
phase.
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APPENDIX A -- Eact Solution for E (r, )

Equation (131) may be written

A 2 t^___ * .--Ao-ef
2(e 2 z -A s 7" Ax- "

2' 1 7'1•'

A *-r t -r

Put -C6, U-2)

A. 11

(A-3)
0 .3 W -f. v x ,.i' )<..,

or t e(zt)- 4(T,,) -,--r ,sh6 i)

(A-4

ýý. ý-

63 RAD -TDR-63-147



Letting oa

' er •t 9 - A (hm
O(E~~m 2(A-6)

7 dr J+ .

2 r ',*J* -r

""+ I'LOAat d4 eJ(.,•"('2 4ý* i (A-7)

A- 'A delr&#(aA

= - ,(A-9)

(D C- (D- (A-11)
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I'

Now - • o (A-42)

2.~~A ''4TT~-

(ez-Z)( -. W)AS.,t =e, L60-Ar - 1 (A-14)

Now from A-3

S_ ,

= (h2--0

(PO-~ ~ ~ ~~ 2~ AA-(Omtý0j -)( ))r

. A A - 0 (65 -A D C- -Dr.-R.- ,-3r (A-1 7)
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WD--- (A-22)

0 (A-23)

(A-24)

(A-25)
• r.• - " ' d¢'• • ' . (e - P) e - e(*' r)

So = 0 (D--A):( (A-26)

Therefore, we have for C the differential equation

(0 "-i 9'#) -'A#)e = 0 (A-27)

and the following four boundary conditions.

[(D+A)e] = 0 (A-28)

[(D -1)ej] = o (A-29)

A-) e o 0(A-30)

66 AD -" (A-63 )
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.I

The general solution of A-27 may be written

A-32

4- e~6o r- os, CO AV* sw$o Y

where a ,.r.- c a Z-,6 an

are the four roots of Dt'2O0+.) A 0 so th~t*

A-33

The coefficients a,; are functions independent of r and, for the

required solution, are to be determined by conditions A-28 to A-31.

From A-32 one obtains:

÷• °•{•.-F7¢ ,Aq.. o,,at _ ; A0.o ,
C e.

a i4 6f, CA'

6 AyF + > (a 47 I a,5

•e ~~ ~ ~ )4 are onyitrse4ntecsswee•.(0 L/
6 7 I• A D C -T3 )-6j I1A

DG e (( -I Oa.5u#a.v'A7 1 snu

A

De = eC7I(a. 4)A ~(o0 e~- .)cs42 -1 IZ 17C d

I e,4,z) Sin A~

4- 115r06 0" 0'

*We are only interested in the cases where A> l/*.
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Using these relations together with A-32, condition A-28 becomes

o , a , C S ' 09 a - (A-34)

where 1 +

f--o --7 Cos r.I, 7' 3n c

condition A-30Tbecomes

A A
w2  Co =co T+ s a T

Smlrycondition A-3 9 beeomes

6 a, +(A-37)

o 8 ADC-TD--fs-C47T

A A

andnosT usingc

?imlaA! codto and9 becomesIZ

condition A-31 becomes

6-Td 8 , (A-38)

wherec O . 1ý
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From A-36 and A-38, one obtains

a., =* z ) +f (A-391

an + k2L AA 2A 25r _A . A4

where 2 d** A (A-411

Substituting A-38 and A-40 in A-35 and A-37 results in

-a, + a (C- -/+ a(A-"421

" ,•,• {-_26g ~ , ,''r (A.-43

and A&(, c,4 (b ho

where A J,~'y~24 6 d

(A-Ii)4
1i 4-1 ZJ-.a

"Solving for and a,, from A-4j2 and A-43, ne obtains

- (A-45

F2 h#D(A-- 4 6)
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where v=(c -ce • ) -( -b, (A-47)

After 01 and aA are calculated from A-45 and A-46, .. a and a, can be calcu-

lated from A-39 and A-40.

When rzz , A-32 becomes

If T >

then e2 r= e- v T . 0

and we have: A a rI

(By A-35 and A-37a)

7 5YZ (Since we assumed >z4

and, hence, all the coefficients a,, are finite so that E (t, •) 0

as T7- oo.

In order to show that C-(rit)--a- 0 for all 'r* r -(*;6 -7-)_
12 1

we rewrite A-32 as

e~z(a,) co.3c 4 a. 51ncy,

,) e'70 [Io.,) + IORl I+ 1.,1 +I aRl 0 (e")
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APPENDIX B -- Evaluiation of Certain Integrals

4A f ,K w~Aw24.K4'A#

W2

By writing

w* +K a',LK"A4

&t'+( b,2+ b, z) - 2b, w {WZ+(b, z b,) + 2,

:fW -(b+ itibv)}-{b2 -bzib,

where

b, -
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and then using the method of residues, one finds:

If 2rri (b,2 * i b) I + ( b,+b)L 1
f[tbt* Lbg)2 -~ lf (-b2 #zb,)J = K Y'ZA:+f

4L ,e,(4- 1bl)-b(,z 4-ib y)KS I

- b bf 5 f~Ihb

77- 4 ZIA 02

7-r + , WT

f (b .0 1 b,

2 ri 2(bE ,ib,) -P bpib b,*b bt + 1,6,
1 2n LN zb,)?z(ebz) "4 (b,- iib)j jeb, 5-, i(b.-' #~ i b

2 (-b2 + bf ) b2 t ib -b2 ib1  -b2#oibf
+(-2b2 ) 2 #(-b,,*ib,)2 (iebf)E j 2bz 2(-b2 i-b1) i~b1  L

-6*b,,2b.. If ýýb flh0 b -b2+ ib, bz i b,

f 6bfbz2 bf z + f 2 6b, (bo.24-b')

77-

77r
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In the computation of 4r , the residues at the second-order poles were evalu-

ated by use of the relations

Roes. at a,, -[C j~)fwL

and

Defining

the above results take the form:

7 f1=--

7 2

77" 4
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i
THRESHOLD EFFECTS IN FM RECEIVERS WITH

RANDOMLY MODULATED SIGNALS

SUMMARY

The threshold phenomenon in an FM receiver which consists of an
ideal discriminator and a post-detection Wiener filter is examined for
the case when the modulating signal is a gaussian random process with
zero mean. For this type of modulating signal, the power spectrum
of the discriminator output noise can be obtained by an approach due
to Rice'. Three difference cases are treated: (1) the power spectrum
of the modulating signal is similar to that of a white noise passed through
a first-order low pass filter, and an infinite delay Wiener filter is
used; (2) the signal spectrum is as in Case (1), but a zero delay Wiener
filter is used; (3) the signal spectrum is constant in a limited band and
zero outside, and an infinite delay Wiener filter is used. It is found
that the carrier-to-noise (in the I. F. bandwidth) ratio at which thres-
hold occurs depends on the modulation and I. F. bandwidth. Graphs
showing perfornraiee -near threshold are presented.

1. Power Spectrum of Discriminator Output Noise

The signal transmitted to the FM receiver has the form

co/ 0(d T

in which W , , and d. are constants. The discriminator gain
can be determined as /3-1 by requiring that its output reproduce the
modulating signal X r) in the absence of noise.

Rice conjectures, Equation (2. 31) of Reference 1, that the two-sided
power spectrum, N/D (WJ) , of the output noise of a discriminator with
gain R -/ is given by*

S2-N 2 .)

"*Note that one-sided spectra were used in Reference 1, and two-sided
spectra are used here.
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where EO is the carrier amplitude and Al., and A/_ are the expected
number of times per second that the discriminator input noise phase
increases and decreases by an odd multiple of I" radians, respectively.

•/y(e ) is the two-sided power spectrum of the input noise component
in quadrature with the modulated carrier,

y (e )= 25 (t ) cc's '(t ) - n (t ) S/Avo (e (2)

where 30(t ) is the carrier phase at time t resulting from the modu-
lating signal, and 77 (6 ) and ?7 (e ) are, respectively, the in-phase
and quadrature components of the noise with respect to the unmodulated
carrier.

We are concerned with the case where the input noise to the receiver
and the modulating signal are both gaussian with zero mean. In this
case, /,. = N_ The noise is also assumed to be white with power
spectral density E

We are going to consider two gaussian random processes having
different power spectra, but the same total power, as generating the
modulating signal. Let the power spectra be

K
S" W , =/c. /-< 2  (3)

56 (')) = (4)
o, E L SE •41-ERE

where
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so that the total power

(The spectra have been normalized in such a manner that the total
powers are the same so that the results obtained will be applicable to
all cases. )

Let Br., be the bandwidth of the I. F. filter which is assumed
to have a rectangular passband and to be phase compensated. The power
spectral density of n (s ) or ? (' ) at the discriminator input is
then

S2

2 6~ FOR/ e/l Ir B,,
(6)

and the carrier-to-noise power ratio, P , at the discriminator input
is given by

a
E0 

(7)

In order to avoid distortion of the signal, the I. F. bandwidth must be
wide enough to cover all essential spectral components of the modulated
carrier. On the other hand, in order to keep the carrier-to-noise ratio
at the input to the discriminator large, it is desirable to restrict the I. F.
bandwidth as much as possible. If theeignals were limited to an ampli-
tude t 4 and maximum frequency a = , then .B/ would
be given approximately by

B 2-4+ (8)

Although the spectrum 64 (w) has no well-defined maximum frequency,
its noise equivalent bandwidth is 1¶ý2 cps (two-sided spectrum). Since
the modulating signals, 4 ( C ) and 6('r) , are assumed to be gaussianly
distributed, a maximum amplitude R cannot be rigorously specified

*Distributions encountered in practice differ from true gaussian distri-

butions in that their tails do not extend to t .o
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However, the probability that /l ('tV>,q or/.6(r)/->A is given by

which is less than 10-7 if we choose A=42-,# . The required 8 7 for
this choice of A is, by Equation (8),

It is believed that when Bz, is specified by Equation (9), the distort-
tion of the output signals due to the I. F. filter is negligible. Since one
may wish to choose a value of B r different from (narrower than)
that specified by Equation (9), in the analysis we will use

= M / ý. -,0_•--. (10)
= r 2

with 7n unspecified. Defining e , a nondimens-onal modulation
parameter, by,

Then Equation (10) may be written as

For the case of a gaussianly distributed modulating signal, accord-
ing to Equation (5. 13) of Reference 1,,

- -d2. (13)
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I

where

Since

e 1,L2 •ad O'j4

00 2

000

•-- f-i'

/_a
- 'lax

and
00/ o 4!e-Z

/ 2 a

00

÷2 e-a-

=/ e-A /-i7+2 .P

we have for large .P

which is the same as Equation (5. 14) of Reference 1. The approximate
value of #,, given by Equation (15) is higher than the exact value, but
the difference is less than

/0o/0 •+per 
cent.
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of the approximate value. By the use of Equations (12) and (14) one can

write (15) as

A//4 / e (16)

According to Equation (7. 6) of Reference 1,0-0
W( 2 a)=2 a (r)e-r (o)W- R% (,r) cosc&,'r dr (17)

where 0

4 82,

',,s O')-.- L 2 6" -) ds8,, --.-

(> 0 FOR I=I/> 0

With 6(60) 3 (, as given by Equation (3),

"'(7

79I , +-e-6l14
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i. and

S4 (•- ÷ -- e

Joh

With s(0) ýu= $4 () as given by Equation (4),

fl()-e'(') /Z 0a - Cos Oj'r /)

fkf
~#i ' ~ t(Cos

2.77 " 2

and

Since B,, is usually much wider than the bandwidth of the output
filter (in our case, a Wiener filter), we will approximate

W\/, () , - - < c < -1 (18)

for either modulating process. This assumption simplifies the mathe-
matics and, when used with Equations (15) or (16), yields results
slightly on the conservative side. The expression (1) for the discrimi-
nator output noise power spectrum now becomes
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2~ E

where

4 r'2 /4

or, using (7) and then (12),

9? Ii(m~' ;,)Z)j (20)

Defining the channel quality factor A0 by

2E2 ýt•A

-

finally yields

No (ee) ýz1. .(ej) (222 ?

We note that a , given by (20), decreases rapidly as p
increases and its contribution to the mean square error of the output
becomes negligible for -A sufficiently large. In Chapter II, the con-
tribution of the 3k2 term in (22) was neglected, and the results there
obtained are, consequently, applicable only for large.,' .

As _R is decreased below a certain value, the 3b_ term can
no longer be neglected and it has the effect of depressing the output
signal-to-noise ratio below the valUes previously computed. Further
decreasing the value of .A results in a rapid deterioration of the
output signal-to-noise ratio.
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2. Threshold Investigations

The threshold phenomenon will now be quantitatively investigated
for the following cases:

Case I Modulation Spectrum Sa ( ) , Infinite Delay
Wiener Filter

Case II Modulation Spectrum Sq (&j) , Zero Delay
Wiener Filter

Case III Modulation Spectrum S(6 , Infinite Delay
Wiener Filter

The computational procedure used to specify the Wiener filters
is the same as used in Chapter II.

Case I Modulation Spectrum Sa ( 60 ) Infinite Delay Wiener Filter

The frequency response of the infinite delay Wiener filter is

Y(w (23)

With this filter connected to the output of the discriminator, the mean
square error between the filter output and the modulating signal is

2- , (24)

Using Equations (3) and (22),
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where

Aof -1 (27)

Then

f 2 AT ' 
3 0 & ) z

J2 7 . 40,~r ~ __

(28)

Using Equation (5),

Uiing Equations (26),and,(27),

Hence, by defining

0 (29)

F2, 4 J-• I -t- (30)

See Appendix II of Chapter I for the evaluation of the integral.
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the output signal power to mean square error ratio is

--.P- (31

If we take 7/ = 0, this reduces to

(P) (32)

which is identical to Equation (158) of Chapter II. From Equations (31)
and (32),

(P///-/ •

f2o = 0 (33)

By use of Equations (20), (21), and (29), A• can be expressed as a
function of P , 7 and o9

When A6/k<K ,A 0  /2 • z ? , and Equation (31) yields

P (V Ž2 L /

4 • • •(34)

Threshold may be considered to occur when

VLOG P////o os o(P/H- )V.o= o•,o(- )=- .

where 6 is positive but smaller than 1, so that Z < 1. When
A « I ,(34) applies for practical cases (where A. 1/2 ) so that
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threshold occurs when

SA- (35)
A0 k

Substituting Equations (20) and (21) into (35),

'7 7 Ae r (7,M-126 (36)

where -Pr indicates the value of .p at threshold. Defining

2 r e 2 3 2 7n e)jb (1/4- 2 e Ln 712 " 22

and taking logarithms, one obtains

#°06-1 -LG@ 2 1,0-- LO -/3 LOG M ZO0:6 -h Z, 06G).37

Ar = L 0 e 2(37)

Thus, one can find Ar for given -m and e by trial. When 4 0 •10Z4,
'm a 2, and - . 045 (or 2) - 0. Z0), log 6 varies only slightly so
that 4T varies approximately as log 9 for fixed M .

Case II Modulation Spectrum 3 (W ) , Zero Delay Wiener Filter

In order to define the transfer function of the required Wiener filter,
we first find a realizable frequency response Y, (0 i which satisfies

Y, ((W ) *ND)(=

Substituting (25) in this,

y, (&) y;(O ) -= *,; 'I,'(,)2  f All

Therefore,

25 UADC-TDR-63-)47
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I

where

S-- ---- , -(38)

We next write

4 k' 4(e*- '• )(cp.-8 2+ 'e ;5(w#÷ 8 a ÷' "5',

where

_ _ _ _ _ _ _ _ _/

7 '' _ __6 v_

2 Ba9.•(&~-iB,-ik) - ', 282

Since

(je" )'t°e a- /'

and

0!_~iee~t' )e-,,tc~t - /,,_

1-(*-4 -~-

the impulse response corresponding to the frequency response Y.. (w)
for t • 0 is

' Ai e - ee / e e

86 RADC-TDR-63-147
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Our next step is to find the frequency response )/ (,) corresponding
to the impulse response

C 2 ( t) FOA e 04(~t)
0 FOt < O

Thus,

e Z ' £e4t 0 / a k2C_ _ _

Finally, the frequency response of the required zero delay Wiener filter
is

Yf (do= • (W ) Y,((-)

Z

is 60-/ (39)

With this filter connected to the output of the discriminator, the output
NI due to noise is

No ~ ~~00 (j Y W 06

By comparing this with (28) and then using (31),

20  '/0

8(41)
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The contribution to the mean square error of the output due to distor-
tion is

00

= 4k ~ // - 1  2 w(42)

Since.

I-xf ~4 (A: _64____602.._64__

2 A)688 RlD -TDy.-,340- h44
{?OIFI

4

-A4 --- 2 L 0  ____ (43)

where

COO

C2 = (do 2 4 ka )(&)4 *kf2~ I I

__27_' __k___6 0____ 2 Ile* A'

2
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41A, Ifk/i,/ (44)A01 ~ A,41'/ - (A k 2II A

and

0'0

4, *24B, 2(k26to .2Ril

U
r (B, 9/(2 9

=7B,__ __, h,"-2- -,t ,B, -

77" I _ _ _

-A , ,,/, t (m,-/)_, (45)

Using the definitions of A, , AL,, A, , and 7 , one finds

2  h12 a

A2  
(46)

A 2

so that

CZ- k3  Ao# (47)
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4/ O (48)

Using these values of C2 and CO as well as 4 k/2 = 1'
the expression of Do , Equation (43) becomes

'7'~7 1?'__

or

)4 ')

F A

A-2 (49)

Hence, the total mean square error of the output H0  obeys

D-._ /o _ N:O
.P P .P

AA
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so that the ratio of signal power to mean square error

.P 7 / +(50)

Ifwetake 7-0 ,then A ?o = /2 - , and
the above formula reduces to

Or. (51)

which is identical to Equation (180) of Chapter II Thus, we have

'a /#0 
1, •I0O~(PH (52)

= /0 ~ ~ L0~'(3- ) '= tz•o A" • - -"' o,'.%I

so that, by using (20), (21), (29) and ? -A1214 , one can calculate
R0 for various _P and given 7 and 6 .

Case IH Modulation Spectrum 9b(uej ) , Infinite Delay Wiener Filter

The power spectrum ,Sb(w ) is given by (4), and the required
frequency response of the infinite delay Wiener filter is for this case

Y (C) S6C9)

or, by (4) and (22),

y (W) =- (53)

-0 E/,I H•

The mean square error between the filter output and the modulating
function is then
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7r it

U) z TA

S..... . ... ... . .. .........-

-TAN-1

Let (A-S) - TAN- and using r = TAAI(A-O)= TAN A - TAN8
7ANA-TAN 8#f'

HN, - P{---/" TA A(,,. l r j- (54)

where

Define

0+ f-(56)

Then, (55) and (54) can be written as

-T -V / I f 57

and

, + (f,, to) v, (58)

9-2 + R ( ' 1 -, , -R- +
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If '- 0 , then . • and (58) reduces to

2

/ (59)

where

_7•I / 1(60)

When 2. • 30 (which holds for most cases of practical interest),

S<(o. f 0 o *4 and

A,• 14,r •oe 0 0 , -A6o

so that

7-11"2 /'S rfW- y _

and (58) and (59) reduce to

__ 2 772 (61)

)_,__ i,ý , 0<z\ /. /Z 4••

Then

12- 2 •(63)
=0A 2  w)2  Z/

Threshold occurs when this ratio decreases to( /-,a ) beinea
positive number much smaller than 1. Thus, at threshold

so that A2'1 A / and threshold occurs when

/

or

59t 'D-T . (64)
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Using this relation together with (20), which expresses JP in terms
of -A , 7 and e , one can determine Ar , the value of P at
threshold, as a function of "7 and 6 by trial or graphical methods.
We note that (64) wouid be exact, if

0 ELSE WANER&
instead of (53) were to be used as the frequency response of the output
filter.

3. Discussion of IkesUlts

The main purpose of this investigation is to investigate the behavior
of the output of an FM receiver in response to a stochastically modu-
lated signal in the threshold region. In Figure 1, the decrease in the
ratio of the power of the modulating signal to the mean square difference
between the output and modulating signal below that predicted by the
large carrier-to-noise power ratio theory has been plotted. For the
range of parameters illustrated, it is evident that the deviation is neg-
ligible for values of P , the ratio of carrier power to the noise power
in the I. F. bandwidth, greater than about 11 db, and that the threshold
occurs in the region of A between 7 and 10 db. Recalling that the
I. F. bandwidth, A

which for large -Mr 0 is proportional to ? 6 , one notes from the
figure that the deviation from the large carrier-to-noise power ratio
theory -is more rapid the greater the I. F. bandwidth, as one would expect.
The apparently gentler behavior of the ),= 4f ,= 6 , 0 delay curve
compared to the--= 4 , e=m 6#, -0 delay curve is explainable as
follows. Since these cases both have the same I. F. bandwidth, the
discriminator outputs are identical. However, the zero delay Wiener
filter results in approximately 6 db more noise output power than the
infinite delay Wiener filter above threshold. For any rate of occur-
rence of impulses (N1/ 4- +A/- times per second) or for any value of
4 , the relative (db) increase in noise output power is less when the

zero delay filter is used than when the infinite delay filter is used
On the absolute basis, the infinite delay filter will always give superior
performance. 'This phenomenon is more clearly demonstrated by
Figure 2 where P and (./A//,.. are plotted agjainst the channel

quality factor N, . The channel quality factor A, may be

Because the ratio of the noise equivalent bandwidth of the zero delay

filter to that of the infinite delay filter is less than 6 db.
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expressed in several ways in terms of the other parameters of the
system. Thus,

2 2

2 (~2=~ k#/2 k-- -P

,e/2 A

et

Br-

7

where

2 - k. .... modulation parameter

/0- = ,2 .... carrier-to-noise (in I. F. bandwidth
2 E# •R BIF) power ratio

'* - .... I. F. bandwidth

These formulas permit ready conversion of plots orgP/A/ versus X4
against other parameters, e. g. , to conyert from ?o b to I. F. carrier-
to-noise ratio, •. db subtract 10 logr-j--(M #7/0 ) O'J . From the
first expression for A , it will be noted that '4 is independent
of 77n , the parameter which establisher. the I. F. bandwidth, and hence
for fixed modulation (i. e. , for fixed f3 , d. and h- ), the channel
quality factor AO is proportional to the ratio of carrier power to
noise power density.
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Figure 3 illustrates performance near threshold for band-limited
modulating signals with two different power spectra, corresponding to
2r= 0 and "&-- 1/Z . The two power spectraare shown in the insert

of the figure. It might be mentioned that the curves shown in Figure 3
are practically unchanged if a sharp cut-off filter, which has frequency
response

L0/. ELSE Wd4'ERE
is used instead of the Wiener filter.
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II

i Iv

APPLICATION OF INFORMATION THEORY TO BOUND THE
PERFORMANCE OF COMMUNICATIONS SYSTEMS

A question of continuing interest is to what extent the theorems of
information theory can be applied in order to establish bounds on the attainable
performance of communications systems. Although a simple or complete
answer to this question cannot be given, some preliminary results which we
have obtained are presented. In the process of doing this, we also hope to be
able to dispel some widely held misconceptions.

As background material, we will very briefly review some of the
terminology, theorems and results of information theory. The proofs of
the theorems and derivations of the results can be found in the references
which are given.

We shall assume that all processes with which we are concerned are
ergodic. The most important properties of an ergodic process for our
purposes are: that any sample function of the process observed over a
sufficiently long time exhibits a behavior typical of the process, and that
time and ensemble statistics are identical. In the case of a discrete random
process, such as a sequence of digital data, only a finite number N(T) of
sequences having duration r seconds have a nonvanishing probability. The
rate of generation of information of such a process is defined as

R = .. ANN

The capacity C of a channel is defined as the maximum rate of transmission
of information of which the channel is capable. The fundamental theorem of
information theory states" that it is possible to transmit information at a
rate A'.4 C with arbitrarily small probability of error, but that this is im-
possible if R > C . In order to achieve rates very close to channel capacity,
very lengthy codes (the explicit construction of which is not known in general)
may have to be used. The fundamental theorem applies to continuous as wenl
as to discrete channels.

* The properties of an ergodic process are discussed in Reference 1

(pp. 15, 57) and Reference 2 (pp. 67-68).
* Reference I (pp. 39, 67)
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Consider a channel in which the transmitted signal X is perturbed by
an additive noise n so that the channel output y is given by q = % t n.
Further, -let the bandwidth of this channel be restricted to W cps and the
mean square value of the input <z 2 > = P . Then the capacity of the channel
is bounded by

WA, P ÷ N, 4 W _-& P* N (2)*
N1 N1

where N = average power of the noise
/l/ entropy power of the noise

The entropy power N/ of a random process is a measure of the random-
ness of the process. White gaussian noise has the greatest entropy (randomness)
for a given power and bandwidth of all random processes. Entropy power of
any process is defined as the power of a white gaussian noise having the same
bandwidth and entropy as the process under consideration. Therefore, we
find that for white gaussian noise, the entropy power N!, is equal to the
actual power N and, for any other process, the entropy power is less than
the actual power. If the additive noise is white and gaussian, the upper and
lower bounds in Equation (2) are identical so that

C - wA( ) (3)

which is without a doubt the best known equation of information theory.

In analog communications systems, one is interested in reproducing a
continuous waveform presented to the input of the system at the output. Since
a continuously variable waveform can take on an infinite number of values,
its exact transmission would require a channel of infinite capacity. In practice,
one is not interested in reconstructing a continuously varying waveform exactly,
but may instead decide that the communication system is satisfactory, provided
that the mean square error between output and input does not exceed some
specified value, say N4 . Ac may therefore be called a mean square error
fidelity criterion. Satisfactory communication can then be obtained by trans-
mitting, instead of the actual waveform produced by the source, one of a number
N (r) of preselected sample functions of duration T _. the sample functions

being selected so that the mean square difference between the sample function
and the actual waveform is less than N1 . The rate of generation of infor-
mation is then given by

Yj, (4)
r--w oo T

SReference I (p. 68)
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where N(T) is the minimum number of sample functions required to satisfy
the fidelity criterion NA . This rate is bound by*

W. An < (5)

where P = power of the source

P, = entropy power of the source

A• = permissible mean square error

W$ = bandwidth of source

By the fundamental theorem of information theory, it is then possible to
transmit continuous information over a channel of capacity C with a mean
square error not exceeding A(, provided that C Z R where R is given by
Equation (5). If the source has the statistics of a white gaussian noise procese
then the upper and lower bounds of Equation (5) are identical and

P - WS A P (6)

Suppose now that the communications channel has a bandwidth WCHf , signal
power PCH and is perturbed by additive white gaussian noise of intensity

N/0  watts/cps. The capacity of this channel is then

C,%CC' W'W & / )CH

The information rate 9 which can be transmitted over this channel is then

R 9CC (8)

Substituting Equations (6), (7), we find

P(9 • WCIAW('/No WC
which may be solved for to yield

* Reference 1 (p. 80)
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N0W (10)

PcH
rn P..0n-,.ooN -~

with n WeN bandwidth expansion factor.wS

It should be carefully born in mind that Equation (10) applies only to the case
where the source has the statistics of a white gaussian noise (since we assumed

P1  = P ) and that NC is defined as the mean square error between the
output and input waveforms.

If the input source does not have the statistics of white gaussian noise,
then p (11)P ,€Ws .-. ,--•-

Satisfactory transmission requires C k R so that

p c
w 5 A.-•Z >R < c- WCN..(I*7 o-pI7 -)H (12)

.A- '0 + NO WS

From (12) it is clear that this approach will not yield a generally valid bound
on the maximum value of P/iNl which can be obtained by use of a given channel. *
On the other hand, using the lower bound of Equations (5) and (8), we find

R(, )WS P 4R 9- - VA #. C

/VI NOW. -I
PC//)

.i !g--ows

Equation (13) is a valid bound for the maximum attainable ratio of source
entropy power to mean square error between the output and input of a system
containing a channel perturbed by additive white gaussian noise. Equation (13)
is plotted in Figure 1 with n as a parameter.

*Numerous attempts at deriving an expression for the maximum attainable
signal-to-noise ratio at the output of a communications system are recorded
in the literature, References 3, 4, 5.
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In connection with Figure 1, it is again emphasized that signal power
and signal entropy power are equal only if the signal has the statistics of
white gaussian noise.

In order to gain a better understanding regarding the relationship of the
above bounds to the performance of practical communications systems, let
us re-examine the manner in which the bounds were derived. The central
idea used in the derivation was that of coding which would involve a delay at
both the transmitter and the receiving terminals. At the transmitter, an
entire sample of duration r" is obtained from the random source and, then,
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the closest of the Nr() sample functions is selected. A code word repre-
senting this sample function is then transmitted*, perturbed by noise, decoded,
and the waveform corresponding to the code word reproduced at the receiver.
If the channel signal-to-noise ratio is improved and the same code used, the
mean square error of the output remains unchanged. (Actually, only the
probability of error, which is already assumed arbitrarily small, decreases.)
These characteristics are in sharp contrast with those of communications
systems using modulators and demodulators which have essentially zero delay.

*Note that the characteristics of the coded message need not be simply
related to the original waveform; they are, in fact, determined by the
characteristics of the channel.
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V

TRANSMISSION OF ANALOG INFORMATION
OVER A DIGITAL CHANNEL

INTRODUCTION

The transmission of analog data by means of a digital data link is a
practical technique whereby a desired output signal-to-noise ratio can be
obtained with reduction of transmitted power but at the expense of increased
channel bandwidth. Furthermore, the digital system is adaptable to a
variety of digital coding schemes which have been developed for purposes of
security or antijam protection. In this chapter some of the characteristics
and limitations of such sy,ýteins will be investigated and compared with
recent work by D. Slepian ' which establishes bounds on the error rate
performance of the digital link.

Commonly, analog transmission systems are compared on the basis
of the output signal-to-noise ratio attainable with a specified channel signal-
to-noise ratio, while digital systems are generally analyzed in terms of the
probability of error as a function of the channel signal-to-noise ratio. In
comparing discrete and continuous systems, or in evaluating the performance
of analog-digital-analog systems, it is desirable to establish a relationship
between an equivalent analog signal-to-noise ratio and the corresponding
error (quantization error and errors due to noise) of the digital channel.

In Chapter IV, it was pointed out that, in general, it is not possible
to apply the theorems of information theory in order to establish performance
bounds of analog communications systems in terms of the channel and out-
put signal-to-noise ratios. However, when a specific digital system is
employed for the transmission of analog data, such relationships may be
developed which are useful in comparing the performance of the various
systems.

First, it is necessary to establish a reasonable definition of "signal-
to-noise ratio". Although we have not been able to obtain a universally
applicable definition, the one adopted below is reasonable for the systems
under consideration and is also consistent with the signal-to-noise ratio
properties that one normally would require for the linear system shown in
Figure 1.

In this linear system in which independent noise is added to the input
signal, one certainAly expects the signal-to-noise ratio at both the input
and output of the linear amplifier of gain K to be 5/N , where S•- <X- >
is the input signal power, and M = < n ) is the additive noise power. Note
that by requiring the output signal-to-noise ratio to be independent of the
linear gain, we rule out defining .5/N as the ratio

signal power of input signal
mean square difference between output and input
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INPUTn Z 0 ouTput
<'A6 < (? w(S +N)K2

<n-l>

FIGURE 1

In the linear case, we could get the desired result by taking the ratio of

output power due to signal only
output power due to noise only

However, such a definition fails when there are nonlinear devices in the
system and also gives unreasonable results when a linear filter is interposed
into the system. We have chosen to define the output S/N as

portion of output correlated with input
portion of output uncorrelated with input

which appears to have a greater range of applicability and, also, gives the
desired result for the system shown in Figure 1. Thus,

A/ f- - 11)

where the correlation coefficient p is defined by

/0 <X1,•> (z

Now, consider the system shown in Figure 2.

UNZ TNEL ILTER ()

FIGURE 2
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Let a.t) be a random function of time which has zero mean and is
limited to a bandwidth WO . By the sampling theorem, a,(i) is completely
determined by samples Qa taken once every Tp-• seconds. Let the
samples be independent and uniformly distributez over the range _MA
From each sample, one of o quantized samples, Zg , is generated as
follows: If '; 4-L a < ;(66 , then

A =0, 1,2---, M-1 (3)

Each x; is transmitted over a digital channel and received as with
a probability p (Vy / YV) . The sample yk is given by

WmAkk--)• k = 0, 1,2,---, M-1 (4)

Since a(g) is sampled at intervals of i seconds, the samples ,t occur
at this same rate. They are passed through an ideal, unity gain low-pass
filter with bandwidth WO cps, and the system output :.(O) is formed. Note
that the analog input to the system is &,(I) and the analog output is 4,N)
however, they are completely determined by the samples a,,,Ea a( a nW
and Vk( ( 1. , respectively. Figure 3 shows the rela-
tionship between, anle range of the variables in the system of Figure 2.

0 - -- "÷

A

0 a.) n FIGURE 3 An

The performance of the system for transmitting analog information,
described above, will now be obtained in terms of the error rate performance
of the digital channel. First, a conventional binary PCM system using an
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optimum bipolar binary keying technique will be investigated. Then the
performance of a similar binary PCM system will be evaluated under the
assumption that the transmitted digits are scrambled so as to produce a
uniform distribution of the errors among the incorrect levels. Finally,
these results will be compared with performance curves developed from
the recent work of Slepian which established performance bounds (proba-
bility of error) on digital systems operating over a noisy channel.

Since we are concerned with an analog communication system, the
system performance will be described by the relationship between the output
signal-to-noise ratio (5/N)4 and the channel signal-to-noise power ratio.

Then, from Equation (1)

S1(5)

where

2 <an ->2 (7)

or in terms of n =

p _ <a4 SO<_ (7)

THE PCM CHANNEL

Consider a PCM channel where an n -bit number represents each
of 44 = 2n quantized levels to be transmitted. Since a sample is formed
every 41 seconds, the number of bits generated per second is 2W#?)
Assuming bipolar keying, each bit is received with a probability of error
per bit, 9 , given by3

TO (8)
where E is the energy per bit and No is the noise power density. Since
the transmitted power S is equal to 2LWnE

~-~(~ 117 W.n N./V)' f L-ter'" j- (9)

where (S/N), is the channel signal-to-noise ratio with the noise referred to

*Since a•() M- j31, sa70,6 and *•n . Sint:, t e / ; js k

.. -00
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a bandwidth WO . In bipolar keying, two bits may be transmitted per cycle
of output bandwidth; therefore, we obtain n - W/W, , the bandwidth expan-
sion factor.

We now proceed to find p in terms of , the probability of error
per bit.

W

j-. ,.I jM2 E (10)

Since a. is uniformly distributed, p(Z;) a f therefore

""<'Vie M"L A2 (-f A Z -

A2 

)

/-'- (44 -f) (I

AO- f M-1 A M-f 4f-f

Z:,) E P~vz 64 P(i) 9/2 A9" Z '7o '0 P(Y' lI n V, (12)
1.O k-O ko a'O

Since the bit errors are independent in binary coding

P(, I).= (l-)" 9 ( 'k)= p(q5I4k) (13)

where rit is the number of correct transitions.

Therefore, M-1 M_/

XV/ 19.4 fj /.! <.' > A ýM2 - (14)
k.O /2o

where use is made of (3), (4) and (11).
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To obtain (a,, VA> , we first obtain (Oan yt, which is the expected
value of a,, t given that .6 was sent.

A

z,,•k• - f •k Ipraj•.dfl,,n)d (15)

Since is being sent, p(V4 ar,%)wp(Vkly/) and p(od,,zi yk) -P(%Ixi)
therefore

A•, +' ,÷

- z.• (16)

Before su.mming on ; to obtain <.,• jj,~>, we must evaluate (WA >s

The binary number i representing yi may be written as

n-f'-23 c&2• where •.a is either 1 or 0 (17)

Using Equation (4), we may write

Let '4.* = 0Oor l and c.g =O0or 1 be the id6 bit of the /7 -bit code
representing k and i , respectively. Then

f-1I

k--

d.z 0

fl-I

40
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I

Since < d4, k X 0]~j [(-~ + C?v'X given 0~r

and kd...,-. d .> f [(-t) 01]. + x[9 ] X - =- given cdi;,.

we can write <d&.k -di u (0 - 246,j) (20)

n-I, r/-f ~
Therefore <k)) F7(-Z Z2" 9E'29Z 44,=0,Ox 4.0O

But zk~ - j 21

Therefore <k>i -+(AM-f)-,2i (22)

From (18) and (22), we obtain

A <> - A4- -Af

ac A V ~ ) 0,(

(f-,2)A(I--) - (23)

where use is made of Equation (3).

Using (16) and (23)

<7 <,), -k <>j z 2 - 2f

Therefore . (24)

113 RADC-TDR-63-147



We may now obtain p for PCM by combining (7), (10), (11), (14)
and (24)

/0z/2

,('W) -A.-. ) m t (25)
4•Ma /2 12

Using the definition for (s/N), , we obtain

(/) pM ) (f,_ -_ 21)_ (26)
(7) T-0 ; ýA -( A •2- _ )(i - 2?)"

Using Equatilon (9) for bipolar keying

2f2)- /-~-r --- eF~ (27)

Therefore, for binary PCM using bipolar keying, we get

N(f) (28)
0 M2f(*,2f)Fer;fU()1

Equation (28) is plotted in Figure 4 for n = 5, 7, 10 and 13.

A MODIFIED BINARY PCM SYSTEM

It is of interes. to obtain the performance of a binary PCM system
where the errors are distributed uniformly*. To do this, we obtain
the probability of error in transmitting an n-bit character using PCM with
bipolar keying

Q;,. f- (Ifn (29)

*Equal probability of all errors can be assured by making the assignment

of the sampled values si , to the transmitted characters, at random (of
course, the assignments must be made in unison at the transmitter and
the receiver).

114 RADC-TDR-63-147



, I

I Ii

. .................... .... - ..
80 ... ......... . ...

. ...... ....... ................. ..........

1~ 0 z lo

- -..-

60. ............

so-- .. ... ................. .... ..... --.
.0 ... . . . ................. ...... . ... ............... • ........ .......

_ _ I I I I"-

40 -- - - -----...................... . .... ......... ......... ...- " .-...... . ....... ...."..."../ /' ....................... ....... " -".'-........,.. ii...... ""............"...

1F I IS .0 II .0 82
(aIl)i, db,

Figure '1 CONVENTIONAL BINARY PCN4

-115 RADC-TDR-63-117



Knowing ' , as given by Equation (9), we may plot Qp vs. channel signal-
to-noise ratio .(,4AN)i (Figure 5). Given the character error Qp and the
assumed distribution, we may write, paralleling the approach used for
normal binary PCM,

MZAZ (30)
/2

S> A- (M-/) (31)

f 7 - -

anO AnO

-•'> / <ip- k-%L-1(32)
kaO iso

Since, when an error is made, it is assumed to be equally distributed

P(9'kj* - P(YjI76k) (33)

and I j IA ( 4

k.O 12 (4

As in conventional PCM from Equation (16)

<a1 V1>i - Xi<V>;
In this case,

< Y k > , = ( I-=,)-i + - M - 1

,k.O

= f- p Qj-Pj j(~pj (35)

Since P;

Then <a,, Vt > I(f- --
~n k ~7)-f (36)

and , 2 .•
ad<cnk (1Qp" (~ > (37)

Therefore, from Equations (7), (30), (31), (34) and (37)

a A A PC-DR- (38)
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From the definition of (S/N)o , we obtain

I,,)• W ,- (39)

The probability of character error, Op , versus the channel signal-to-
noise ratio, 1(s/N)i has been computed for binary PCM and is plotted in
Figure 5. Using Equation (39) for the modified binary PCM system and
the Qp curves of Figure 5, the output signal-to-noise ratio (S/N)0 has been
plotted versus (S/Nl) in Figure 6 for values of n = 5, 7, 10 and 13.

COMPARISON WITH BOUNDS ON DIGITAL SYSTEMS

D. Slepian, in two recent papers' 2 , has applied some of Shannon's
results to obtain a bound on the error probability in the transmission of
digital data over a noisy channel. Slepian presents curves which give the
minimum channel signal-to-noise ratio required to obtain a given proba-
bility of error, Q , for various values of n and R/W , where n is equal
to 2W" ( W = channel bandwidth and 7- is the coding delay) and R/W is
the information rate per unit of transmitted bandwidth.

In the case of PCM, the delay time, 7" , is equal to the sampling
period and, hence,

nf 2W"

f W (40)

Then, R LWo

2 l' 7

0.6 (41)

Since Q is the probability of error in the transmission of a code word T
seconds long, it is equal (in the PCM system where T =.- ) to the
probability of error in the transmission of Y, .= 21Wo

Figure 5, obtained from cross plots of data presented in Reference
2, shows curves for Q versus l(S/N)i for various values of n

In order to obtain an output signal-to-noise ratio from these curves,
we make the assumption that when an error is made, it is uniformly dis-
tributed among M-1 levels. (As was previously noted, this assumption
may always be satisfied. ) This allows us to use the intermediate results
obtained in Equation (39) for the modified binary PCM system.
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Hence, - ( 2 f fQ 7
2 (2

Equation (42) relates the output signal-to-noise ratio to the proba-
bility of a character error Q . Using the Q curves of Figure 5 and Equa-
tion (42), the output signal-to-noise ratio versus channel signal-to-noise
ratio (S/N); has been plotted in Figure 7.

CALCULATION OF RATIO OF SOURCE ENTROPY POWER TO MSE

In Chapter IV of this report, bounds on the maximum attainable
ratio of source entropy power P1 to mean square error (MSE) have been
presented. This ratio may be obtained for the systems under consideration
in this chapter and compared with the results shown in Figure 1 of Chapter
IV. The entropy power P1 of the source is defined by

f )Z#/

where W/is the entropy per degree of freedom of the source. Since the
samples of the source are independent,

HI f (07[1"a"1~ (44)

with MA

p(a,,)} = A, 2(45)
1 , elsewhere

Then

HIM nT)a_,,m f (46)fal 4A ,,o,)dn ' I

and combining (43) and (46),

'I -1bI I/ n(A (W1(7
P~ e (47) -If 2 rre 2rre 2ire

Since MA (from (10)

<a,-> - 0 70 a,7 (48)

and

1 00 70a <A R2> (49)4fSE mse"
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In order to minimize the MSE, y/k is modified by a gain factor )

MSE = "(" -AVO )'> = (a') + <an)+ ) -<<ank(50)

From (24) and (37) and since <Vk> - <(z,

MSE - s,, > + A'<-Z - 2Aq0<Z,> (51)

where = (f- 29) for conventional binary PCM with bit error rate

and = - for PCM with a uniform character error
distribution.

To minimize the MSE with respect to

from which A 0

Therefore, the minimum MSE is given by

WE 5 z)- q',, (52)

Then 2
AOsfE < _n_> 0 2<9' Z> -

(Qd .?

From (10), (11), (30) and (31)

<Yqz Moz-f

and, therefore,

< 0'17 2 1 (53)

For the case of conventional binary PCM,

P, 0.703 (54)

and for modified binary PCM (uniformly distributed errors)

S0.703 (55)

122-f (R-6
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S. and for the PCM system based on the error rate bounds given in Figure 4
(Q curves)

S 0.7(56)
MISE A

Equations (55) and (56) are plotted in Figure 9 for n = 5 and n = 10
(A" = 32 and 1024) along with the bounds obtained in Chapter IV.

SUMMARY AND DISCUSSION OF RESULTS

The application of PCM techniques to the transmission of continuous
data has been investigated. Equation (28) relates the output signal-to-noise
ratio for conventional binary PCM to the number of quantization levels
and the channel signal-to-noise ratio. These results are plotted in Figure 4
for various bandwidth -expansion factors.

Figure 6 is a similar plot in which the output signal-to-noise ratio
is plotted as a function of the channel signal-to-noise ratio for various
values of n when the binary PCM system is modified such that the errors
are uniformly distributed among the incorrect levels.

Then, from Equation (42) and using the bounds on the error proba-
bility as given by the Q curves in Figure 5, we obtain a bound on the output
signal-to-noise ratio as a function of channel signal-to-noise ratio for
difference values of / . This represents an upper bound (but not necessarily
the lowest upper bound) on the performance of the modified PCM system
with a uniform error distribution and these results are plotted in Figure 7.

For purposes of comparing different communication techniques, it
is desirable to exhibit the performance characteristics of these systems
by a curve representing the envelope of the knees of the curves in Figures
4, 6 and 7. Such curves for the two PCM systems are shown in Figure 8
as curves C and D and give, for a particular desired output signal-to-noise
ratio, the minimum channel signal-to-noise ratio required. Similarly,
curve B in Figure 8 is the envelope of the knees of the curves given in
Figure 7, based on Slepian's work.

In the system shown in Figure 2, the information signal is converted
into a discrete signal source of M levels. Since one sample is obtained
every 4j- seconds, the maximum information rate of this source is given
by

Ro = 2 W,9ofM bits/sec. (57)

Note that R may be less than R. if the sample values are correlated or
if the M levels are not equally likely. Shannon has shown that it is
possible to transmit a message with an arbitrarily small error probability
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over a channel of bandwidth W perturbed by additive white gaussian noise
of average power N and with average message power S, provided

9< W1o92 (f, 4). (58)

Letting

R. - .2W. log, M - W I0?2 (f# + (59)

we can find the minimum S/N required to reproduce the M level signal
with a probability of error as small as desired. With reference to the system
of Figure 2, a zero error probability will result in an output ($/AN),EJ P/( -P-4)
given by Equation (26)

(S/N)o - MZ- (60)

Solving for M and substituting in Equation (59) we obtain

woog[~*~)] 17gf#()- (61)

Solving for ($/A/)o

("Jt (62)

Equation (62) is also plotted (Curve A) in Figure 8 and relates, for a
desired (S/1), (and a given bandwidth expansion factor), the minimum value
of (S•/), required. It should be emphasized that this minimum ($/N)j is
achieved only with a sufficiently long and complex encoding process which
entails a delay approaching infinity while the jother curves represent systems
in which the delay is equal to - f

Curve B represents a bound on the performance of a system with a
uniform error distribution and having the same number of degrees of freedom
as a binary PCM system (RVW = 0. 6) and, therefore, may be compared to
the modified PCM system (Curve D). We note, again, that Curve B is an
upper bound but not necessarily the lowest upper bound and, hence, does
not indicate that a system exists which can do as well. However, we see
that only a few db of (5/N): separate this upper bound fr.om the modified PCM
system represented by Curve D. The output signal-to-noise ratio in these
PCM systems is found to be a function of the manner in which the errors
are distributed among the incorrect levels, as is demonstrated in Figures
4 and 6. It is observed that the difference in the error distribution has
its greatest effect at very low signal-to-noise ratios and has relatively
less effect on the.position of the knees of the curves. As would be
expected, for the PCM systems considered, the signal-to-noise ratio
performance is degraded by imposing the condition of uniform error
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distribution as compared to the conventional binary PCM system where the
error distribution is more favorable.

The performance bounds developed by Slepain in Reference 2 allow
one to establish bounds on the performance of various systems consider-
ably more complex than the binary PCM systems considered here. One
might consider coding schemes in which a coding and a decoding delay, 7T
is accepted (where T" >•-) but where the information rate to channel
bandwidth ratio remains unchanged. Thus, n = 2Wr has been increased
and, from Reference 2, we can establish bounds on the performance of
these systems. It should be noted that Reference 2 provides not only a
performance bound that cannot be exceeded, but also provides curves
which define a performance level that is, at least, obtainable. It should
also be noted that when a code group is decoded, not all of the data words
will necessarily be incorrect. The distribution of these data word errors
is not specified in Reference 2 and would have to be known from the char-
acteristics of the given coding system in order to compute the system output
signal-to-noise ratio. However, if the resulting error probability, 0 ,
is sufficiently small, the only contribution to the output noise will be due to
quantization noise, and the limiting output signal-to-noise ratio may be
obtained from the expression given by Equation (62).

In Chapter IV, bounds on the maximum attainable ratio of signal
entropy power to mean square error were derived and plotted in Figure 1
of that chapter. This ratio also has been computed for the PCM systems
considered in this chapter, and some of these results are plotted in Figure
9 along with the results from the previous chapter. The P9/M$" for the
modified PCM (uniform error distribution) is plotted from Equation (55)
for f7 = 5 and #7 = 10, and the P,/Mf for the PCM system based on the
probability of error bounds of Slepian are also plotted for the same values
of fl . These curves are very similar to the (S/N)o curves plotted in
Figures 6 and 7 and show the threshold of the modified PCM system to
fall a few db from the threshold of the curves developed from Slepian's
bounds. However, we see that the bounds on the 4/M05C obtained from
Chapter IV fall several db to the left of the PCM curves, which reflects the
relatively poor utilization of the theoretical channel capacity by a binary
signaling system for this range of channel signal-to-noise ratios. It may
be further noted that the bounds obtained in Chapter IV apply to all
signaling schemes whereas Slepian's bounds apply only to equal energy
signaling methods and that binary PCM is in the latter class.
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VI

APPLICATION OF A PARTIAL ORDERING OF CHANNELS
TO THE COMPARISON OF DIGITAL DATA SYSTEMS

The problem of comparing digital systems with different size
transmission alphabets has recently been considered by Wolf. 1 The
method of comparing N-ary systems described by Wolf is as follows.
A K-ary stream of information digits is converted to an N-ary stream
of transmission digits and the received N-ary transmission digits
are then converted back to a stream of K-ary digits. The probability
of error per K-ary character in the output stream is denoted by F(#ji
In comparing two systems having transmission alphabets of size NA
and IV , if /, < , the Ni-ary systen is more.
reliable than the N2 -ary system for transmitting K-ary information.
A reversal of the inequality reverses the ordering of the reliabilities
of the systems.

Wolf illustrates the surprising result that the relative performance

of the systems for fixed Nt and f•z may depend upon the size K
of the information alphabet for which the error probabilities are com-
puted and then compared. Thus, it is possible that Pk, I< p/a
for a comparison on the basis of K, -ary information digits while for
K 2 -ary digits (A 2. XI,) ,> . Now, for
optimum coherent detection of N orthogonal signals of equal energy

E- , chosen at the transmitter with equal probability, and corrupted
by additive white gaussian noise with zero mean and spectral density 2

N o u/- c,4 , the probability of error per N-ary character is

where

0 - - (2)

If /A = 2 and A/ is an integral power of 2, then 3

N PV (3)
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By reference to Figure 1, one sees that P.(2 < P,.(32) for low
signal-to-noise ratios, that is, when the energy-per -information-bit/
noise-power-density is less than approximately -5db. However, Wolf
also shows that in this same range 3a > P3 2  , which
illustrates the dependence of this method of comparison upon the size
of the K-ary comparison alphabet. A dependence upon signal-to-noise
ratio is also evident from Figure I in that P(2) > P(•a) above

approximately -5 db.

Thus far, only digital systems characterized by square, symmetric
transition probability matrices between input and output symbols have
been discussed. We will now describe a basis for comparing arbitrary
discrete communication channels, i. e. , systems characterized by general
rectangular probability matrices, which is both intuitively satisfying
and contains within it the results described above. This comparison
method is based upon the partial ordering of communication channels
which was introduced by Shannon4 and extended in RADC-TDR-62-134.
The class of all discrete memoryless channels is partially ordered with
respect to a relation of inclusion, written -- , i. e. , if /Z ,

and K,, are any channels,

(i) K1 2 •
G) 2 (4)

(ii) If K X 2 . and k/2  / K< , then X, /(Z

(iii) If K/ 1<2 and K2( ý/<3 , then/(, /<3

The inclusion relation itself can be defined in terms of the transition
probability matrices which pertain between channel input and output
symbols. Keeping in mind that the transition probability matrix of a
cascade of channels is the matrix product of the individual channel
transition probability matrices, given a channel represented by a transi-
tion probability matrix W one can, by employing pre- and post-
channel pairs with matrices /R. and T., with probability 3,K
obtain a channel represented by the matrix • where

Q = 2 "R,\VT (5)

The channel characterized by W includes that characterized by ,
written W ;2 , if Equation (5) is true for some set of R,,

To., and g . Thus, in words, W4 includes Q if W can be
made to behave as 6Z
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If \A/-Q and Q A/ ,W and Q are said to
be equivalent, written W Q . This is a mathematical equivalence
relation and, as such, partitions the class of all transition probability
matrices into disjoint equivalence classes. Channels are identified
with equivalence classes of stochastic matrices, which accounts for
property (ii) of (4).

Given any two channels /(, and / 2 , if A', 2 } 2  , it is
reasonable to say that K, is at least as reliable as K2 since X.
can at least duplicate the performance of t2 However, this in itself
does not completely resolve the question of comparing two channels,
since it is possible that one has neither /K -/K 2  nor X 2 a/(

for a given pair of channels, i. e., neither channel includes the other.
It will be seen that this is exactly the case for the binary and 32-ary
channels considered earlier for an energy-per-information-bit/noise-
power-density less than about -5 db, whereas for values greater than
this the 3Z-ary channel includes the binary channel.

At this stage the channels being considered are quite general,
even to the extent of having different size input and output alphabets.
As a special case, consider the symmetric channels, which are defined
as follows. A channel is called symmetric if for some A/ and some

-p the equivalence class of transition probability matrices constituting
the channel contains the matrix P = [,] where

X IPS 2(6)

Such a channel is completely specified by K and -p and can be
denoted Cý,• . The method described here for comparing arbitrary
channels is as follows.

Given arbitrary channels K, and X2 let _p be the maximum
for which /< f , C•,, and -P2 the maximum r for which

K2 CA*,, . If -7o, > -p? , then A, is more reliable than KA for
transmitting K-ary information. In terms of error probabilities this
condition is 1--p, < /-- p2 . Thus, k,, is more reliable than

k 2 for transmitting K-ary information if K, can be made to
behave as a K-ary symmetric channel with a smaller probability of
error than is the case for X 2
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An immediate consequence of the above is that if K1 includes
/• , then X, is at least as reliable as KX for transmitting K-ary

information for all X . This follows from Property (iii) of (4).

Consider now the comparison of N-ary systems of the type des-
cribed earlier, with error probabilities given by Equation (1).. These
are symmetric channels, and their comparison then centers about
inclusion relationships between symmetric channels. The following
result, which was first derived by Walbesser 5 , is concerned with
the structure of Shannon's partial ordering of symmetric channels.

Theorem: A necessary and sufficient condition that
"a C,1, t N,A/,R >f is that e lie in the closed interval:

-- -- _- t _N. •-- .
•I. • N/

,N-• • 4z-Ž (7)< __•

7Al A-1 /V (7)~7V

11. 1! A

N-I --
R-;/ N ____

N~, & 9v/) ,V-fk
(A proof of this theorem is given in-the Appendix. This is a minor
extension of the results presented in RADC-TDR463-134 in that symmetric
channels Cvlu for which -ýV < 7- are also considered. The
inclusion relations amongst the symmetric channels, as determined by
the above conditions, are illustrated graphically in Figure 2. In the
unshaded regions neither channel includes the others In what follows,
we limit ourselves to the more realistic N-ary symmetric channels for
which > J

Let us now compare an N,-ary and N2 -ary channel with respect
to their ability to transmit K-ary information. Denote the channels by

CV/I -.Af and C#,, . For AAI l. ,". , it is
readily determined from (7) that Cv,,,V is more reliable
than ,,f if

NZ P2 < N,1 bP (8)
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In terms of the error probabilities P,,, f-_t , a= /-.p2 (8) takes
the form

< A/z A/, M

Note that this result is independent of A as long as A is greater than
or equal to both N1 and Az . In particular, for A/, = 32 and
N2 = 2, using the numerical results from Figure I together with
Equation (3), it is found that

f /

S'16 16P
Thus, the 32-ary channel is more reliable than the binary channel for
transmitting K-ary information for all Kz 32. Figure 3 depicts
the situation for the case of A = 32. The curves of P2 and P2
give the performance of the'systems to be compared. For a given energy-
per -information-bit/noise-power-density, the 32-ary channel includes
all 32-ary channels with error probability lying in the dashed region,
whereas the binary channel includes those 32-ary channels lying in the
shaded region. It is seen that the given 32-ary channel includes all
32-ary channels included by the given binary channel and more. This
is true for all abscissa values shown.

Suppose now that A• /V- .I 2N . It is readily determined
from (7) that 0*11 is more reliable than C/ if

or, in terms of error probabilities,

//,-I < I'G)

Again, this result is independent of K as long as A is less than or
equal to both A', and NA2 . Even more striking is the fact that in
the notation of Equation (3) this can be written

P2 NO (12)(IV

which coincides with WolfIs method of comparison for A =2. The
result here, however, require; only that X 4 N, , A/2  and places
no other restrictions oh All and; IA/
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I&

Figure 4 depicts the situation for A/f =32 and Az = 2 and
Z= . The binary channels included by the given binary channel

have error probabilities lying in the shaded region, whereas the binary
channels included by the given 32-ary channel have error probabilities
lying in the dashed region. The change in relative performance at an
abscissa value of about -5idb is evident.

For the case of Alt <4 < Aa , it is found that C•/•O,
is more reliable than CN,4  if

1(-N__ Ai, ____2 (13)

which indicates a dependence upon / . This case has not been
investigated in any further detail.

In summary, a method for comparing digital communication
systems is presented which (I) encompasses channels represented by
arbitrary transition probability matrices between input and output
symbols, (2) relates directly to Shannon's partial ordering of channels
in the sense that, if one channel includes a second, it is at least as
reliable as the second independently of the size of the comparison
alphabet, (3) duplicates Wolf's results for the special cases treated
by the methods in his note.
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APPENDIX:

PROOF OF THEOREM

A proof of the result (7) is given here. Define a pure stochastic
matrix as a stochastic matrix whose elements consist entirely of
zeros and ones. Then, given any -m ? bn 7 ;7 stochastic matrix P
it is possible to express P as a convex linear combination of at
most ,., (77- i) * / pure stochastic matrices , i. e.,

To prove this, let P = [-P'/) bp any m by 77 stochastic
matrix. Let ji denote the column index of the minimum non-zero
element in the V'14 ," row; if this non-zero minimumi occurs in more
than one column, Ji may be selected as the index of any one such
column. The non-zero row minimums are then the . Let

6z), = 7n.,e~
(,)

and let P be the pure stochastic matrix defined by .. O44 = I

Consider the matrix, P- &J, P(') which differs from P only in the

(%.,IZ ) elements, in which case the elements are

- 60";!

Furthermore, at least one of the -k ), is equal to zero. Thus,

the matrix, P- W) P (r) , has at least one more zero element than
P . In addition, the row sums of P- t•-f P () all •1qal, I-- W-•

Repeat the above procedure on the matrix, P- e)t P(") , to obtain

a second pure stochastic matrix, p12) , and consider the matrix,
P- &) P~' (1 e P(2 . This matrix contains non-negative

elements, has at least one more zero element than P-nnne, Pv~e , and
has row sums all equal to .J - W- &. This procedure is repeated
as long as the resulting matrix contains a row with more than one non-
zero element. Since there are only finitely many elements in the
original matrix, P , and since each repetition of the above procedure
produces a matrix With at least one more zero element than the pre-

ceding one, the process must terminate. Assume this occurs after
r-l repetitions. Then,
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where each row of the matrix, q , contains only one non-zero element
equal to I - d, -192 - 1.... - Thus, ( has the form

where P(A is a pure stochastic matrix. Setting /-t- -** ... A..,i(

P - PO) M ... P (14)

where the P are pure stochastic matrices and 40i >0,# & I

Thus, P is expressed as a convex linear combination of the above
pure stochastic matrices. The maximum possible value of A is attained

if each repetition in the above process produces a matrix with only one
additional zero element and if there are initially no zero element in P
Therefore, t .. (7 (-i) * /

Consider now any transformation of the type given by (5).

If each R and r., is replaced by its representation as a convex linear
combination of pure stochastic matrices, the transformation is expressed
in a form involving pre- and post-multiplication of D by pure stochastic
matrices only. Thus, one need only consider transformations with the

P and rK pure stochastic matrices.

The stochastic matrices, P =FPS:' and +4 :
defined by

i, j .. 42,.- , i ,N

"N-I

are contained in the symmetric channels, C#,,p and CR1j , respectively.
We are interested in conditions under which *1ý4 • ew or,
equivalently, Pa ;
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To determine necessary conditions, assume that P i Q Then
there exists a transformation such that

The traces of the matrices are related as follows,

and, thus

72i,77 M4-. ,(A-3)

The use of min and max is justified by the fact that only pure stochastic
matrices, )R,, and 7- , need be considered and, since these are
finite in number, the minimum and maximum must occur for some specific

R *< , T.< pairs in the set.

Suppose these pairs are ,- , 7- and r , ,i.e.,

min ZOR•L ( •(,R- P r-) r4, Q-(A4mm=(A-4)

max t R(PT• ) (k+p7")= %. &# (A-5)

where

Q- = kP, +- *p7"+ (A-4)

Equation (A-3) is a necessary condition that ON, . To
show that it is also sufficient, assume that the condition is satisfied,
i.e.,

/C (A-7)

Let /Z00 represent the channel containing Q÷ , and consider the
transformation,

R!

R.. 7  Q +U (A-B)
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where the R, range over all permutation matrices of order R . The

elements of LI• are

A. / .4AZ,' ='--t , .. = J

e , s = , 1 , 2 . .(A -9 )

- R-!,j z -,i

Now P P. Q" by (A-6) and U•" by (A-8). Then P- U by

property (iii) of (4).

In an entirely similar manner, one finds that P • I where
/

A7. =-/ 0-• Z '= V,-

(A-10)

•:, --- /,2, ..-. ,R.,

From (A-7),

Q = 0WQ e) -!- 0 • - (A-i)

and, by a result of Shannon 4 , P , which demonstrates that

Condition (A-3) is sufficient for Cho a C)?,t.

It remains to explicitly evaluate the minimum and maximum con-

tained in (A-3). Let Q(-)= Pr., and consider a typical element

on the main diagonal of

"(O = N (Z00 - , ( /

where -�,t is the index of the column of R. in which the *kth row
w,,re"v) row

unity appears. The effect of P,,,< in determining is to select out

the "" row of P . Now, let ZT& be the set of row indices of T.(

corresponding to the rows in which the K th column unities of Tc<
appear. Then 3*, 2 ,. is a partitioning of the row indices,

1, Z, ... , IV , into , mutually disjoint sets, some of which may be

empty. Then

and

1D14
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Informing one is free to select a single eleznent from each
column of P ,the sum of these elements being A Q In addition,
these elements can be selected from not more than R rows since the
range of the dummy index, k ,is from I to R

For R > N ,each row of P can be utilized and is
maximized by selecting the maximal element from each column. If
S> i/1 then p >(I-4iW-f), and the maximal column elements lie
on the main diagonal of P . On the other hand, if - < I/A/ , then

V < (/f-• • /-)• and each column of P contains N-I maximal ele-
ments, each equal to(i-/)/(A'-') . Thus, for RŽM:

~2~t(~Q )A/+- IF s-p> //A/

-V 1-4 AP -p< I/A,

f_/ , then all elements of P are equal andif•=~ =-- A-/j7 -I--

To find min(•. (A the argument proceeds exactly as above except
that, in this case, minimal column elements of P are considered.
One obtains

A/

Thus, for ,R A N , Equation (A-3) can be written
/ -- PN N /

A~ A- I N~ '
which is in agreement with the first part of (7).

Consider now the case of R : A/ . The above argument must
be modifiefdin'thatonly R rows of P may be utilized in the maximiza-
tion and minimization of A ) . Thus, one must select a repre-
sentative from each column of P with the restriction that at most
rows may be utilized. In maximizing & Q if . N , each of the

A rows can contribute one ;" but the elements taken from the remaining
/V-9 columns must then equal f On the other hand,

if ,<. ,,maximization is accomplished by selecting a . it from
each column, which is possible since A• . f . Thus,
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max (A, j ,"J RP (MV-;<?$)
-N-1

- N -1 N • IF -P-

and

max N I ./V- A/

For -• -- , these maxima are identical. Si'mil rconsiderations
apply in finding min(O 0 ii) . , the N elements are
minimal column elements and N of these can be selected. On the
other hand, if -A , the 'P"S are minimal column elements and
only R of these can be selected, the remaining N--R column repre-
sentatives necessarily equaling (/-f')/(A/-I) Thus,

/V- t A F-•2I/

R- I N• - A- IF P ,•! I- -
-N -1 IV-1 /

Thus, for R S N , Equation (A-3) canbe written

R/V/ /V

which is in agreement with the second part of (7).
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VII

OPTIMIZATION OF DIGITAL COMMUNICATION SYSTEMS
OPERATING OVER A DISPERSIVE CHANNEL

OPTIMIZATION IN THE FREQUENCY DOMAIN

SUMMARY

This analysis is concerned with optimization in the sense of minimizing
probability of error of a digital communication system, where we have con-
trol over both the transmitter waveforms and the receiving system but not
over the channel transfer function or the noise properties. The transmitted
signals are assumed to occur independently and with equal probabilities.
The energy and duration of the transmitted signals are specified. The noises
added at the input and output of the dispersive channel are assumed gaussian,
but not necessarily white; hence, a linear receiver is used. Matrix Equations
(10) and (11) give the relationshipd which must exist in an optimum system
among the signal, receiver, channel and noise functions. These equations
can be readily solved for the optimum receiver given the transmitted wave-
forms and vice versa. The main problem is, however, to optimize both the
waveform and the receiver simultaneously. For a particular situation, i. e.,
specified channel transfer function and noise autocorrelation function, the
form of the solution is obtained. That is, series expressions for the optimum
transmitted waveforms and the impulse responses of the receiving filters are
developed. The coefficients of the series have, however, been specified only
for the binary case. Interesting orthogonality properties which the component
functions possess are developed.

The chapter concludes with an alternate representation of the probability
of error based on geometric concepts.

INTRODUCTION

Figure 1 illustrates the system to be analyzed.

f,

FIGURE 1

*Thir system was previously considered in Reference 1 where a time domain
analysis was employed instead of the frequency domain analysis which is
used here.
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The input signals are time limited, i. e., the , vanish outside an interval
[0T] and it is aswiimed as well that the filter functions w., are zero for
S> - . The noises nj , n, are additive, gaussian with zero mean.

The filters are sampled at t - T and the decision made that Al was
sent if the output of uw-. exceeds the output of each of the other filters. In
Reference 1, an expression was obtained for the probability of correct de-
cision PA as a functional of the 01 , u-Z . The problem was posed of
determining the set of functions, signals and filters which maximize PA when

"Wo and the noise correlations are given and the energies of the signals
limited. A set of necessary conditions on the 4" , to-, was obtained by means
of the variational calculus. These conditions had the superficial appearance of
a system of integral equations but the kernels were, themselves, functionals
of the unknown. An explicit solution was then obtained, including the calcu-
lation of Pce , for a particular t4- and noise correlation in the case NV = 2.
It is found, however, that the techniques which succeeded for NV = 2 were
intractable for larger N .

The present investigation deals with the same set of necessary conditions
on the time functions oze , .0 . By replacing these conditions by equivalent
ones on the Fourier transforms and operating in the transform domain, we
have succeeded in finding the form of the w, , Yoe for general IV (where
the same U.- and correlation as previously used have been retained). This
is the main result and is given in Sections 2 and 3. The A, , e&" are found
to be linear combinations of functions of the same class that solved the case

A/ = 2. But, as yet, we have not been able to determine the coefficients
which complete the solution for NV> 2.

In Section 4, some orthogonality relations are given which the functions
arising in Section 3 satisfy, along with some invariance properties of the
basic equations in the time domain. These results are important for the
construction of explicit solutions from the general form.

An alternate representation is obtained in Section 5 of the conditional
probabilities of correct decision which, in some respects, is more convenient
than that given in Reference 1.

147 RADC-TDR-63-147



TRANSFORM DOMAIN, PRELIMINARY THEORY

We consider functions of a complex variable of the form

where 7 is real and dy , are real or complex.

Expanding the exponential in (1), we observe that the singularity at
= -,0 is removable. Defining G('w) by continuity at this point, we

have that G (W) is entire. It is shown, as follows, that the IFT (inverse
Fourier transform) of G(w)

_a*"
3() e•-.i've 4j (2)

vanishes outside the interval [0, 7"] , where real t is understood and when
7" is negative [0, r] is understood to mean Er5 0) . The assertion is

evident if 7--0 . For 7>0 , if t < 0 or > >T , we can write

It C
where C is the contour consisting of the real line completed by a large semi-
circle in the LHP (lower half plane) in the first case, or by a large semicircle
in the UHP (upper half plane) in the second. Hence, q (t) vanishes in either
case, and similarly if T< 0 .

For any function of the form

C $ 7- real (4)

we define
,d ()

i. e., the W) in the exponent is replaced by the zero of the denominator.
And for any linear combination of functions, ej (W) of the form (4), we define
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We observe that the function

* C (7)

has the form (1) and that any linear combination of such functions, r fixed,
has an IFT which vanishes outside E 0, 7] •

If (C.) - /V)/ (W ) is a rational function for which degree of N < degree
D and P has only simple zeros, we see from the partial fraction repre-

sentation that

e-iwrR(&,) - [eCa17'R(W))'R (8)

has an IFT which vanishes outside o,7"J .

In evaluating , it is not necessary to operate in each
case with the explicit partial fraction representation, for we have that if

i =1, 2, ... M are the zeros of D then

[ eeAi M(6) (9)

where W(,)

GENERAL SOLUTION OF MATRIC EQUATIONS IN TRANSFORM DOMAIN

Equations (30) and (31) of Reference 1 gave the necessary conditions
that the probability of correct decision, Re , be a maximum. These may
be written in matric form.

- T-V- S r) A Q (10)

where 9, ) , A are constant square matrices and k ' If e
are 41Y dimensional vector valued functions of time (column mt whI
are distinguished by the tilde written beneath. The transpose of 'P is indi-
cated by 9 . The interval on which (10) and (11) are required to hold follows
from the requirement (which we impose as before) that the N signals 1"
and the N weighting functions wsj vanish outside the interval [0, 7] _ The
vectors i , n, 1 are defined by

14 tACTD-3 (12)
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1A,--3*Ufr (13)

(14)

where too and 0 are the channel weighting function and noise correlation
function, as in Reference 1. The square matrices have the properties

[A.O (15)

where the €Aq are Lagrangian multipliers,

.' -k t 0 o - , 2, ... N (16)

0-o, (17),2,...(

S- • .(18)

Since (16) and (17) imply that - , are singular, it is convenient to make
the following transformations. Define , , by

J. -. .7o (19)

(These transformations will permit us to modify a certain matrix product
which will occur subsequently so that it will not be singular.)

where

1,097"10,'0'
0,7,0, ....- 1 01,1, 00 1

Xo 0,0 ,/,08**-1 s Jo,'- 0,0,7,)0 1 *(20)o,1,o, ..... 1, o,-o1
* 9

Ot O,' 0 . . .. I,- 00/,o• .. 0,0o, 7

Then , ' o have the form
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I *Y * In L 014 Vil 74 #.ISt* 0

(21)

#1 ' 0OA ., ... ... o,, . ,. . .',• .,, . D1

Upon substituting for 9) , q in (10) and (11) and multiplying the resulting
(11) from left by .- I , we get

k, '(r-zH-) x (r (22)

i~y --r (23)

where

"h=Lh(24)
r' I Jo r -,T 70 w- -, ev=p*Z • "p••,

~'Z

e. g., A/" •

Writing explicitly in terms of the unknowns, we have

I~o TC r , 10(25)

VC (ti*p ) 7 - - J( p*w'). 0 (26)

(We shall at times for convenience indicate arguments of certain functions by
subscripts.)
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Our problem is to find real functions •', f , when t% ,,o are given,
which satisfy (25), (26) in the interval Lo,i 7 and which vanish outside this
interval. We define the FT (Fourier transform) of a real function t&06) by

and note that if wo-(t - a- (T- t) , then W (CW) e (6))

Let the left sides of (25), (26) be denoted by

) V? (&- ') - f (27)

v-'6- ~ f)-) 0 (~* ')t-(28)

Using the convolution theorem together with the property just noted gives

Ww)e "e-1 r- (29)(w C) - Po (W--o w') e"•-• (30)

where the bar indicates complex conjugate and Wo , , F , are the
Fr'Ys of 40 , . We may now rephrase our problem as

that of finding Y , -so that the IFT's, A , -1 are real and vanish
outside 103 7_ while ite IFT's d , of (27), (28) vanish inside [0, TJ

Let us take

F - [0 e •L)'r'-- (31)

where = W, IY" and the operator [.]A applied to the column matrix
means that the operator is to be applied to each element. It is understood
that we shall subsequently take L•' in a form consistent with Section 2. Then

r represents (if the FT of) a function f which vanishes outside [0, 77
This does not yet make f real, but we note that since zw is real,-f will
be real if tV' is real. We use here the criterion that the function represented
is real if 'W•() - W(-cj) . Applied to (31) together with the fact that I.].
commutes with conjugation and, also, with sign change of Co , we have

F5 e - A:D C- TeDR-6 H (32)
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I
Then

e 0 X'f 0 W.(H- TeJToj) (33)

and so (30) can be written

'Vi- (w)W -(ý A71 Lii' WO Re)1 [eieo.rW W]' (34)

Now the elements of the last row and column of the matrix

A (35)

are all zeros. We define .14 as the (4-1) by (Iv-i) matrix obtained from
V by deleting the last row and column, and we denote by ;7,, the (4/-i) by
(V-i) matrix obtained from 1o in the same way. Putting

)Y/. , . (36)

(the existence of the inverse may be assumed), we have

V- 3ý [(W ff/ )'-e , (ejwrWo '•.(

We now take W' in the form

W'- e - e-,rrez~rw& l T> 0 (38)

where jy., will subsequently be taken in the appropriate rational function form.

Writing (38) as

we see by Section 2 that the square bracket represents a function which vanishes
outside - 7, 0) and so •/' itself represents a function which vanishes outside

[0, TJ . Using (38), V becomes

{(- 1 eADe-TD - (39)
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We have to find K/ so that •/ represents a real function and if ,
represent functions which vanish in [0, TJ . To illustrate the technique
that may be applied to this end, we consider the case

W. a._ (40)

'let ••-L (white noise at input & output of wo ) (41)

The first term of (39) is (except for the matrix factor ?, which will be seen
to be inessential to the following arguments concerning the vanishing of lee
in [o, 7J )

where

W t7 e (42)

Let W/• be such that

I I- )' 1(4I3)

where b is a constant vector.

Then

WW =--'6 (.7- ~Y 4) (44)
WO ewo W. I- wo

Since Wo represents a real function which vanishes for negative & ,
represents a real functi'n which vanishes for positive t and therefore in
particular vanishes in 0, 7rj . Because of (43), each component of the
first term in the curley bracket of (39) vanishes in [0,7 ] . To complete
the requirement that ;r vanish in f0 TI , we shall choose the second and
third terms of (39) so that their sum has no pole in the LHP. For the example,
there is a pole in the LHP at wv.-1a and, in a moment, we shall impose the
condition that the residues of these terms cancel. At the same time, we shall
satisfy the requirement that 14 vanishes in [0, rj

Let •" be the roots of the polynomial

4 A(45)
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. e., the gi are the reciprocals of the eigenvalues of Y . We assume
that the 9j are distinct so that we may use the representation for a function
of a matrix

S(7)= .• 61(46)

where the 61 are the resolutions of the identity (projection operators) which
have the properties

6 i 6JO, L0j

iN-V

(For an arbitrary vector X , the matrix operation 61,Y projects X onto
the subspace spanned by the eigenvectors associated with the eigenvalue •/.)

Thus,. by (46), we may write

f '-f I

Hence, from (44)

T. . (47)

From (42)
-W/a

and since the •g are constant, we may introduce new constants BIg by

n ', :,.- i = - 4 1. (48)

Thus,

6'a ib(4%~

With the use of Section 2 and the linearity of the operator we have
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i

[W., f.wwI e ,er I ,g

054 (50)

RA 7'e -2,6i

Hence, the third term in the curley bracket of (39) is

We observe that the term in the square bracket of this expression is just
C (W) from which it follows that .ý vanishes for all positive t and,
therefore, in particular for E O [0-TJ . For the second term of (39), we
have

Y-f -g, * f~, b [ýti AITe'd fr a --e.-- WO eo 6 a ,] (54)
nea~o~, 44 L

Since 6j -A0 , J , , the last expression becomes

(_dI ~s ; eL4T
O5 a, 0 -,•.Ai -4r (55)
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For the condition on the residues, we get

3e L4d2 7j J ~f '8 e -46
Sr r,Vk•-•' • .. • ear • ,s -7 (56)

, 4 - j~ o4,,,./
a l~ L e 46i e - 4r =]

(-;-Z-,o

Since the 6j are disjoint, thia implies that the coefficient of each 9j
must be zero, Hence,

i-47- -. 4 7] -e .17n.,

Simplifying

_.•7_ ,•, a ÷•. ,',d-•.' 4- *-7--,•8 +.•.,j

z + '.a/L,'6V' t * ÷ 6a -I , , +Paz

Hence, we have arrived at the condition

(5?)
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It

which, in view of (48), is a condition imposed on the eigenvalues of /Since we assumed distinct eigenvalues for X , we have to choose distinct

roots of (57) (the case for degenerate eigenvalues needs further investigation).

Collecting the result for !•y' , we repeat here equations (38), (49), (51)

#-ra'i,,-.- 6Z W) c.) ,. (59)

S_ •-,6v .,8, wt6 ~i .e - 2• , 'z#

If we deal with real solutions of. (57), it is clear from the last equations that
whether w' can be made real depends only on whether we can find the approp-
riate constant vector b . This completes the construction in the transform
domain.

Let us carry the results back to the time domain and, then, we shall summarize

what has been found. We have in connection with WV•

1 FT{ -• j-?--= / / a,,,.I. (61)

We have, by Cauchy's theorem and the usual understanding of the meaning of
an improper integral of the form I (that-is, we are taking A. real)

/' ÷ 1z''~ e aeeic=.a r•s. = (62)
a-- (62)

where the contains shown in Figure 2 are for t > 0
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!t!t

-CO --

FIGURE 2

Thus, since the integral over C3 vanishes

-c, -e

and so

se. (i s-in e -tfa I A t)>O (63)

For t < 0 , C3 is taken in the LHP which results in

so that

4L 1W k , (64)

Similarly, we find

r">d -A e14J4;7) (65)

Hence, the IFT of the second term of (58) is n

". a," (- 1A-r 3- 1 ). (66)

159 RADC-TDR-63-147



Combining, we have

0 O, efsewhare

Evaluating ' (t)" gives

h') = a ,•E, 3' ,nd!-e. (68)

From Equation (25)

M(t) - E6biza sind, (1 -T). (69)

In summary, what we have obtained in the present section is that the solution
vectors w', f are respectively linear combinations, Equations (67), (69),
formed from the sets of functions

se- (8!e + tan -"'4') , Sin/s (s.7) (70)

where the 4 are solutions of (57). The result is valid for general /V . The
difficulty in passing from the general form o- the solution to the explicit solutiol
i. e., choosing the appropriate A." and k' , is that (48) has to be satisfied.
The difficulty is greatly diminished in the case M 2. For, then, (67)
becomes simply

St (671)

where h is a constant. And, then, (68) and (69) become

___ S(, I /A (68'

ft) _ _ A-' , s (t -T). (69'

The last three equations are identical with (58), (62), (59) of Reference 1,
while our present equation (48) is just the previous condition (54). Thus, in
the case V = 2, we may show just as we did before that (48) is satisfied.
But for IV> 2, we have not as yet obtained an explicit solution.
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In the next sectioin, we present some orthogonality properties of the
functions (70) together with some general properties of the basic vector
equations (10), (11). Such properties are important for the completion of
the solution for N.>Z .

PROPERTIES RELATED TO THE SOLUTION OF THE MATRIC EQUATIONS

(a) Orthogonality Properties

We give, below, two important orthogonality properties of the sets of
functions

,4i4') - sinr .. t (71)

ns,,( e *L n" 4a ) (7Z)

where the /• are solutions of the equation

ta di 7A='ý ' 8 (73)
n,*2, - 2 na,.

We may, without essential restriction, take the 4, positive and label them
A•A '/,L/• ...... in increasing order of magnitude.

The results are
T

S(t) hJ N(dt o, ct -) (74)

/ () ( d a di-j (75)

where

,Y a- e-It{' (76)

Equation (76) is just the correlation function with which we have been dealing
all along. It is conjectured, however, that the orthogonality properties corres -

ponding to (74) and (75) will hold in more general circumstances. The proof
of (74) is immediate on substituting (71) and using (73). The proof of (75) is
also a straightforward calculation, only lengthy.

161 RADC-TDR-63-147



I (b) Invariance Properties of the Matric, Vector Formulation

It may be verified from the definitions of • , q in Reference 1
report that

d P (77)

By a notation of the form ( / , we shall always mean the matrix whose

element is the indicated quantity bearing the label 4/
The matric equations (10), (11) of Section 3 may, therefore, be written

IdmJ

ij -ee [Oo,7j
/d d PC\ý' ej (79)

We consider, now, that a complete energy matrix has been specified. That is,
that we are required to satisfy

7

0(80)

where the square matrix E is given. This is a deviation from the situation
considered previously where E was a diagonal matrix, but the basic equations
(10), (11), Section 3, remain unchanged, except that X. is no longer diagonal.
Substituting (78) in (80) gives

ATE' (81)

where R is the transposed mean matrix. Substituting (81) in (78), we have

Consider the transformation

k62 7 , y -Al (83)
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where A is an orthogonal matrix. Under this substitution, the matrices*

A4,dFc correspond to the new matrices 57,M
VJ). (T' y)

la PC , . We find the relation between them as follows:

X- '-A , (84)

And similarly,

/,q -AMA-A (85)

For d a) , we have
d PC ' diI 4  (86)

From (84)V

i ,

and substitution in (86) gives

d Pc ldpc(85)

Similarly,

( Ai (86)

Collecting results, we substitute the following in (79), (82)

( Y A- =-, ( 107) A(d )A)

This gives

F (84)(87)PC Id)7

r-t AA.AF

We have used the defintions of m M given by Equations (2), (6) of

Reference 1.
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where E wAE tA

Thus, if 0 , • solve the system when 5 is given, then ar Arj•/v solve the system when E sgvn

We consider next the substitution

(88)

We have at once

A " A (89)

(d&-) . (c!j

Substituting in (79) and (8Z), the equations are unaltered and we conclude that
if f , U,- solve the system, so does f , *ke . Moreover, we deduce
easily from the representation of Re given in Equation (91) of the following
section that

where it is recalled thatP -Z~ L jP
Hence, t, is arbitrary to a multiplicative constant and different constants
give the same Pc .

AN ALTERNATE REPRESENTATION OF CONDITIONAL
PROBABILITIES OF CORRECT DECISION

A contour integral representation of the conditional probabilities of
correct decision, Pes , was given in Equation (14) of Reference 1. It was
obtained by use of the characteristic function of the normal distribution and
was valid for an arbitrary number NV of signals and weighting functions.
We shall obtain directly here an alternate representation which, in some re-
spects, is more convenient than the previous one. We shall discuss it relative
to the case V = 3, but it will be evident that the essential arguments are valid
for any N .
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For IV = 3, the conditional probabilities of correct decision are

A " P (ýz > T,, fX> o.I sent.) (90)

For the first of these, we have

I'5 1"_ e ('2 1)M(%-N ) dXdxo dj (91)

'q
where A", is the moment vector (column matrix) when 4r is sent

/14 is the moment matrix

and ,y is the subset of F& which is bounded by the planes

and contains the point mi . (For convenience, we have dispensed with the
tilde used elsewhere to distinguish column matrices or vectors.) By a pre-
liminary translation, we get

P, ý (r----- X, dx, dx,

where 9' now contains the origins and is bounded by the planes

,-9 - zz Mff7, -rn,. - 0 (92)
-Z f -'Xj1  M'' 'M' 0

Since Al is positive definite, we may make the substitution (Reference 2)

'X (93)

and obtain

where £' is the image of S' under the transformation/I . It is conven-
ient to write the planes (92) in the more general notation
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t0
7'f,": fl' -kk , -- 0 (95)

$'~ 0

where, in the present case,

6 .. Q (96)

Under the linear substitution (4) the planes (6) transform into the planes

* i(97)

where
Z a AO 6 bA,

Since /0 is symmetric,

& M=. 07 Myb. (98)

There is an orthogonal transformation r which carries the line of intersection
of the planes (97) parallel to the -%s axis (in fact, there are an infinity of
such transformations, any one of which will do for our purposes). Introducing
in (94) the change of variable - 7% gives, since Idee•

/ -qi , y, a_,, (99)

where S"' is a cylinder set parallel to -X . Hence, we may integrate out
•4 and obtain

I- "- e dyq iy (100)

where X& is a subset of the plane which may be described as follows. The
distances from the origin to the planes (97) and the angle between them are
given by
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These quantities are, of course, invariant under orthogonal transformation and,
therefore, (101) gives the distances to, and the angle between, the lines which
bound 4 . Using (98) in (101) gives

' cos a - , (102)

so that the parameters which describe ,aS , and therefore P , are expressed
simply in terms of linear and bilinear forms with matrix /W Thus, with the
use of (96), we have finally

d, A (103)

"" .... •. -/ ', - ("n, + .A-l 5

(~14,7. #Ua,)ro (All~ - 41 4 #,a" 33 -

where the ,Uzj are the elements of A/4 . Similarly, for /• and . , we
have

m"_ - _ __,,_____- __ (104)

MA - Me t IV.M - M34

Cos~~~~~ -'1 t -4 3 A dX

coeAJ ( at -A 2,4t "A7~ 'i cose a' d,

A convenient formula for computation of the P7 Ps for N =3 has been obtained
from (100), (103), (104) while further work is needed to obtain a computational
form for larger NAl
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VIII
RECOMMENDATIONS FOR FURTHER INVESTIGATIONS

1. Maximum Likelihood Reception of Frequency Modulated Signals

This investigation should be extended to include operation near and
below the FM threshold. If the results obtained are superior to those
obtainable by other means, such as FMFB, then means of implementing
maximum likelihood FM receivers should be investigated.

2. Threshold Performance in FM Systems

In Chapter III, the threshold characteristic of an FM receiver con-
sisting of a limiter-discriminator followed by a minimum mean-square-error
postdetection filter (Wiener filter) was investigated. The modulation function
was assumed to be a gaussian random variable which made the determination
of the required IF receiver bandwidth rather difficult and somewhat arbitrary.

It would be desirable to extend this work to include other forms of
modulating functions, the statistics of which would be closer to those of signal
functions encountered in practice. It is suggested that a similar analysis be
carried through for a band-limited modulation function having a uniform
distribution of amplitude over a given range. This would be more repre-
sentative of practical situations and, also, would lead to a better defined
bandwidth of the transmitted signal. This would also allow the results of
the FM analysis to be compared with the PCM analysis in Chapter V.

The work in Chapter III considered only the effects of the additive,
white, gaussian noise source in dLexii,,ig th output signal-to-noise ratio.
The noise power and, hence, the position of the threshold is quite dependent
on the IF bandwidth selected. Thus, from the standpoint of reducing noise
(and, hence, threshold), it would be desirable to reduce the bandwidth; how-
ever, any reduction in bandwidth is accompanied by increasing distortion due
to truncation of the IF signal spectrum. This work should be extended to
establish, quantitatively, the most desirable IF bandwidth in order to optimize
over-all performance when considering both the additive noise and signal
distortion effects.
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3. Use of Information Theory to Bound the
Performance of Communicatiofts Systems

The bound derived in this report is on the ratio of signal entropy
power to mean square error in terms of channel capacity. This result has
two serious shortcomings. First, we do not know how to attain the bound,
but anticipate that a close approach to the bound would entail a very lengthy
coding procedure. Secondly, the practical significance of a bound on the
ratio of signal entropy power to mean square error is not immediately
apparent. With regard to the first point, one may be able to obtain bounds
for codes of finite complexity by proceeding in a manner similar to that
outlined in Chapter V.

4. Investigation of Transmission of
Analog Data Over a Digital Channel

Further consideration should be given to the selection of the performance
criteria (S/N, MSE, etc. ) in terms of the system application.

A comparison should be made with conventional analog systems (e. g.,
FM and FMFB) to establish the relative merits of analog and analog-digital
systems as a function of channel parameters, bandwidth-expansion factors,
required average power, etc.

The investigation of the effects of different error distributions should
be continued. The distribution of the digital errors may be manipulated in
several ways; for instance, in a PCM system, different energies may be
assigned (by varying the duration or amplitude) to the various bits of a code
word. The ability to alter the error probabilities may be exploited in a
manner akin to predistortion of analog signals, such as pre-emphasis in FM
systems. Theoretical bounds for such systems with nonuniform error proba-
bilities need to be developed.

The system performance when an analog signal is transmitted by a
digital system over a fading channel should be investigated, and a comparison
should be made with direct analog methods operating over an equivalent channel.
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5. Optimization of Digital Communications Systems
Operating Over Dispersive Channels

By system optimization is meant the simultaneous specification of
the transmitted waveforms and the receiver, so as to obtain the minimum
probability of error under the given restraints.

The entire solution to this problem has not yet been obtained even
for the simplest cases considered, except for the case N = 2. The present
state of affairs can perhaps best be summed up by stating that, for a known
channel transfer function and noise statistics,

a. given the set of transmitted signals, the best receiver
configuration can be determined, or

b. given the receiver configuration, the best set of signals
to transmit can be determined.

Although we have expended considerable effort at attempts to obtain
simultaneous optimization, we have so far not been successful. This, there-
fore, remains an open problem. It is noted that, in the radar field, a great
amount of effort recently has been devoted to signal synthesis. Many valuable
results have been obtained, although no real optimum has been found. There-
fore, it seems reasonable to expend further effort at improving system per-
formance even if the optimum remains elusive for the present.
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